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Abstract 

 
This paper evaluates bootstrap simulation techniques for calculating the distribution of the maximum draw-

down (MDD), an important risk indicator in stock and cryptocurrency markets. Using stochastic dominance 

tests, we assess the full distributional properties of MDD under different methods. Our findings reveal that 

the standard Efron (1979) bootstrap, which assumes independence and identically distributed random vari-

ables, systematically underestimates the true MDD. While the moving block bootstrap provides reasonable 

estimates, it is subject to non-stationarity bias, particularly when large drawdowns occur at the boundaries 

of a return series. Alternative procedures, such as the block-block bootstrap and the tapered bootstrap, do 

not lead to better results. Of all the methods studied, the stationary bootstrap of Politis and Romano (1994) 

produces the most accurate and robust results, particularly with longer block lengths. We recommend this 

method as the preferred choice for researchers and practitioners modelling drawdown risk. 
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1. Introduction 

In academia and the asset management industry, it is well known that the standard devi-

ation of asset returns (i.e., the return volatility) does not accurately measure investors’ true risk 

sensitivity (Sortino and Van der Meer, 1991). Goetzmann et al.’s (2017) survey results confirm 

that investors are pronounced fearful of sudden and large market drawdowns. Although this 

fear is not justified from a longer-term perspective (Goetzman and Kim, 2018), many investors 

are constrained by solvency and/or regulation considerations such that they cannot endure ma-

jor losses even for short periods of time. For example, pension funds face large liabilities toward 

their beneficiaries and the failure of their assets to meet those liabilities carries significant pen-

alties (Ang, Chen, and Sundaresan, 2013). Therefore, such investors have limited loss budgets 

and face downside risk constraints. The evidence also indicates that mutual fund managers and 

their shareholders consider downside risk in their investment decisions (Artavanis, Eksi, and 

Kadlec, 2019; Bodnaruk, Chokaev, and Simonov, 2019). Finally, while standard mean–vari-

ance investors would be more focused on volatility than downside risks, central assumptions in 

this framework are violated. For example, although the mean–variance framework relies on the 

assumption that asset returns are jointly normally distributed, the literature acknowledges that 

the distribution of stock returns exhibits skewness (Mandelbrot, 1961; Fama, 1963; Garcia et 

al., 2011; among others), suggesting downside risk as an additional consideration.5 

The recent literature has suggested various downside risk measures. For example, Harvey 

and Siddique (2000) present a conditional skewness measure that captures nonlinear risks in 

stock prices, Bali and Cakici (2004) describe the value-at-risk as a tail-risk measure, and Conrad 

et al. (2013) use option market data to directly identify how the market prices tail risks. The 

simplest downside risk measure is the maximum drawdown (MDD), defined as the largest peak-

                                                           
5 An old theoretical literature explains why tail risks in returns matter to investors (Rubinstein, 1973; Kraus and 

Litzenberger, 1976) and presents asset allocation models with higher moments (Bawa and Lindenberg, 1977; Har-

low and Rao, 1989). 
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to-trough loss associated with a series of returns (Gray and Vogel, 2013; Riley and Yan, 2022). 

MDD captures the worst possible performance scenario experienced by a buy-and-hold investor 

dedicated to a specific portfolio strategy. The concept was initially propagated by practitioners 

(Young, 1991) and has recently gained traction as an intuitive and investor-relevant risk meas-

ure. Most investors pay close attention to MDD because it is easy to interpret: How much can 

they lose when buying at the peak and selling at the bottom? Korn et al. (2022, p. 105) affirm 

that “the maximum drawdown is undoubtedly the most well-known measure” among draw-

down-based risk metrics. Therefore, there is a good reason why Morningstar’s website reports 

maximum drawdown alongside volatility and beta on the same tab. 

Technically, MDD is different from other downside risk measures in that it depends on 

the order in which returns occur (Van Hemert et al., 2020; Korn et al., 2022). Unlike standard 

risk measures such as volatility, semivariance, or skewness, MDD is path-dependent—its value 

is not only determined by return magnitudes but also by their temporal ordering (Van Hemert 

et al., 2020; Korn et al., 2022). This property makes it particularly sensitive to the clustering of 

negative returns, a common feature in financial time series. 

In order to adequately capture the implications of drawdown risk for investment deci-

sions, it is insufficient to analyse realised maximum drawdown (MDD) alone. Instead, the full 

distribution of possible MDD outcomes must also be considered. Bootstrap simulation tech-

niques provide a useful framework for estimating such distributions. However, it is important 

to choose the right bootstrap method, as each approach carries different assumptions and statis-

tical properties. The classical bootstrap method introduced by Efron (1979), which assumes 

independent and identically distributed (i.i.d.) observations, may not be suited for financial time 

series data, which often exhibit serial dependence. To address dependencies in time series, a 

variety of block bootstrap methods have been developed (Hall, 1985). These include non-over-

lapping block bootstrap methods (Carlstein, 1986) and overlapping or moving block bootstrap 
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methods (Künsch, 1989). A problem is that non-overlapping blocks may result in a small num-

ber of usable resamples, especially for short time series. Although overlapping blocks increase 

the number of resampling units, they introduce another problem: non-stationarity. This means 

that data points near the ends of a return series are selected with a lower probability than those 

in the middle. To address this issue, Politis and Romano (1994) propose a stationary bootstrap 

method that uses randomly sized blocks to ensure an equal probability of selection for all data 

points, while preserving the stationarity of the resample. 

These three bootstrap techniques have been widely used in financial applications.6 For 

example, Fama and French (2018a, 2018b) rely on the Efron (1979) bootstrap, justifying their 

choice with the low autocorrelation of monthly stock returns. Arnott et al. (2019) and Khang et 

al. (2023) employ fixed-length moving block bootstraps, while Anarkulova et al. (2022) use the 

stationary bootstrap of Politis and Romano (1994). Among these, Arnott et al. (2019) is the only 

study that explicitly applies bootstrapping to MDD estimation. They document that MDD esti-

mates of factor portfolios derived from moving block bootstraps more closely align with ob-

served drawdowns than those from standard i.i.d.-based simulations. 

Our paper extends the literature in several important ways. First, we systematically com-

pare the three bootstrap methods that have been most widely used in asset management appli-

cations—the standard Efron bootstrap (1979), the moving block bootstrap (Künsch, 1989), and 

the stationary bootstrap (Politis and Romano, 1994)—and assess the effect of different block 

lengths on the accuracy of simulated MDD distributions. Second, unlike prior studies that focus 

on point estimates, we evaluate the entire distribution of MDD using stochastic dominance tests. 

Thirdly, we broaden the scope of the analysis by including both the equity market, represented 

                                                           
6 For example, Efron’s (1989) standard bootstrap is used in Benartzi and Thaler (1995), Hickman et al. (2001), 

Sinha and Sun (2005), Dierkes et al. (2010), Fama and French (2018a, 2018b). Künsch’s (1989) moving block 

bootstrap is applied in Hansson and Persson (2000), Annaert et al. (2009), Choi and Mukherji (2010), Cogneau 

and Zakamouline (2013), Fong and Koh (2015), Dichtl et al. (2017), Arnott et al. (2019) and Khang et al. (2023). 

White (2000), Hansen (2005), Cogneau and Zakamouline (2013), and Anarkulova et al. (2022) are examples for 

the use of the bootstrap approach proposed by Politis and Romano (1994). Lahiri (1999) provides a systematic 

comparison of various block bootstrap methods in terms of statistical properties. 
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by the MSCI World Index and the Nasdaq 100 Index, as well as the cryptocurrency market, 

represented by Bitcoin. The behaviour of these markets in terms of drawdown is distinctly dif-

ferent. Fourthly, we investigate whether the absence of autocorrelation returns justifies the use 

of the Efron bootstrap method for MDD estimation. Fifthly, we assess the impact of the non-

stationarity problem on the results of the moving block bootstrap method by analysing truncated 

return series in which extreme drawdowns occur at the start or end of the sample period. 

Another important contribution we make is testing alternative procedures for dependent 

data. In particular, we use alternatives to the block bootstrap and analyse the block-block boot-

strap (Andrews, 2004) and the tapered block bootstrap (Paparoditis and Politis, 2001) in robust-

ness tests. To the best of our knowledge, these methods have not yet been employed in the asset 

management literature. Finally, we complement our MDD analysis by examining average draw-

down (ADD), which captures the average severity of all underwater periods rather than a single 

extreme event. 

We summarise our main findings as follows: The time series of the markets under inves-

tigation vary considerably. The MSCI World Index has a long data history with relatively few 

significant drawdowns. By contrast, our data history for Bitcoin is short and includes several 

large drawdowns. Using Efron’s (1979) simple bootstrap method, we observe severe underes-

timation of the true MDD in most cases. This result remains consistent even when no significant 

autocorrelation is observed in the time series. Our simulation results for the moving block boot-

strap method are generally good, provided that the non-stationarity property is not an issue. 

Otherwise, we observe a clear underestimation of the true MDD. In particular, the stationarity 

problem becomes serious when MDD occurs at the left or right boundary of a sample. We 

obtain the best and most robust simulation results using Politis and Romano’s (1994) stationary 

bootstrap approach. The two alternative procedures — the block-block bootstrap and the ta-

pered block bootstrap — do not outperform the stationary bootstrap, at least in our application. 
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Therefore, we conclude that the stationary bootstrap method proposed by Politis and Romano 

(1994) is the most suitable method for estimating drawdown risk and helping investors to make 

their asset allocation decisions. 

The remainder of this paper is organized as follows. Section 2 describes our data. Section 

3 outlines our empirical methodology, describing the bootstrap simulation methods and evalu-

ation criteria. Our main results are presented in section 4. Robustness tests based on alternative 

bootstrap procedures are discussed in section 5. Finally, section 6 concludes. 

2. Drawdowns in stock and cryptocurrency markets 

Drawdowns are a common feature across asset classes, yet they tend to be particularly 

pronounced, and often exhibit marked asymmetry, for riskier assets such as equities and, to an 

even greater extent, cryptocurrencies. Financial markets for stocks and cryptocurrencies there-

fore provide a natural empirical setting for evaluating bootstrap methods that aim to accurately 

capture drawdown dynamics. We use monthly stock market data from the MSCI World Total 

Return Index (MSCI World Index), denominated in USD. This is one of the most widely used 

global equity benchmark indices.7 For cryptocurrency markets, we use monthly Bitcoin data. 

As Harvey et al. (2022) observe, Bitcoin is the most popular cryptocurrency and has the longest 

available data history. Due to its high correlation with other cryptocurrencies (Hu et al., 2019), 

Bitcoin appears to be an appropriate representative of this asset class in our study. 

Monthly stock prices for the MSCI World Index are available from 31 December 1969 

onwards. For Bitcoin, however, data is only available from 31 August 2011 onwards. Exhibit 

1, Panel A, shows the five largest drawdowns for the MSCI World Index from December 1969 

to December 2023. Panel B shows the five largest drawdowns for Bitcoin from August 2011 to 

December 2023. For the MSCI World Index, the MDD is -53.65%, coinciding with the global 

                                                           
7 We follow Van Hemert et al. (2020) and conduct our analysis using monthly rather than daily data. Economic 

arguments for this decision are provided in Van Hemert et al. (2020, p. 36), footnote 5. 
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financial crisis (GFC). For Bitcoin, the MDD is significantly higher at -79.77%. The five largest 

drawdowns of Bitcoin are much larger than those of the global stock market index. In particular, 

despite Bitcoin’s very short data history, we observe three severe drawdowns of over 70%. 

[Insert Exhibit 1 here] 

Exhibit 2 illustrates the underwater charts for the MSCI World Index in Panel A and for 

Bitcoin in Panel B. Three of the five largest drawdowns for the MSCI World Index have oc-

curred in the last twenty-four years. The prevailing economic environments during these peri-

ods are well known: the bursting of the dotcom bubble, the global financial crisis, and the con-

flict in Ukraine. The underwater chart of Bitcoin illustrates its even higher potential for draw-

down. During its brief recorded history, there have been four drawdowns of over 60% and five 

of over 40%. Given the pronounced differences between the two data sets, it is instructive to 

explore the specific effects in our bootstrap simulations. 

[Insert Exhibit 2 here] 

3. Empirical methodology 

3.1 Bootstrap simulation methods 

In our bootstrap simulations, we apply the standard Efron (1979) bootstrap, where 𝑁 is 

the full sample size of our observed data points 𝑋 = {𝑋1, … , 𝑋𝑁}. We randomly select 𝑁 ele-

ments with replacement: 𝑋∗ = {𝑋1
∗, … , 𝑋𝑁

∗ }. Repeating this procedure several times, and com-

puting the estimator of interest 𝜃(𝑋∗) for each resample, we obtain an approximate probability 

distribution of the estimator 𝜃(𝑋). In our application, the observed data points {𝑋1, … 𝑋𝑁} are 

monthly returns, and the estimated parameter 𝜃(𝑋) is MDD. This simple approach assumes that 

the underlying data are i.i.d., which can be problematic for financial return data because serial 

dependence is not taken into account (Arnott et al., 2019). 
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Implementation of the Efron bootstrap is straightforward. Let 𝑋 = {𝑋1
∗, … , 𝑋648

∗ }, denote 

the observed monthly returns of the MSCI World Index spanning January 1970 to December 

2023, yielding 𝑁 = 648 observations. To generate a bootstrap sample, we draw 𝑁 observations 

from 𝑋 with replacement, where each return is equally likely to be selected. Specifically, we 

sample 𝑁 integers uniformly from the set {1, … ,648}, where each integer represents an index 

used to retrieve the corresponding return from the original dataset. The resulting bootstrap sam-

ple 𝑋∗ = {𝑋1
∗, … , 𝑋648

∗ } is then used to compute the statistic of interest⎯in our application, the 

maximum drawdown, denoted as 𝜃(𝑋∗) = 𝑀𝐷𝐷̂∗. Repeating this resampling procedure many 

times (e.g., 1,000 times) yields an empirical distribution of the estimated maximum drawdown. 

In terms of block bootstrap methods, we distinguish between non-overlapping (Carlstein, 

1986) and overlapping (Künsch, 1989) approaches.8 However, due to the relatively small size 

of our data sample (particularly for Bitcoin), a block bootstrap with non-overlapping blocks 

would not be feasible.9 Therefore, we use the bootstrap method with overlapping blocks, also 

known as the “moving block bootstrap” method, hereafter referred to as MB. 

In particular, let 𝑙 denote the block length, where we have 𝑁 − 𝑙 + 1 different data blocks 

{(𝑋1, … , 𝑋𝑙), … , (𝑋𝑁−𝑙+1, … 𝑋𝑁)}, labeled as {𝐵1, … , 𝐵𝑁−𝑙+1}. We randomly select 𝑏 data blocks 

with replacement, so 𝑙 × 𝑏 = 𝑁. If this ideal identity does not hold, we follow Hall et al. (1995) 

and set 𝑏 as the integer part of 𝑁/𝑙. In this way, we have 𝑁′ = 𝑙 × 𝑏, where 𝑁′ < 𝑁. Addition-

ally, we select an extra data block with length 𝑁′ − 𝑁. Combining all 𝑏 data blocks, and possi-

bly the (𝑁′ − 𝑁) block (if necessary), leaves us with our bootstrap sample 𝑋∗ = {𝑋1
∗, … , 𝑋𝑁

∗ }. 

To illustrate the implementation of the moving block bootstrap, we adopt a fixed block 

length of 𝑙 = 36 monthly returns of the MSCI World index. Given the full sample of 𝑁 = 648 

                                                           
8 Hall (1985) discusses both approaches in the context of spatial data. 
9 For example, if we have ten years of monthly return data (𝑁 = 120), and we select data blocks with 𝑙 = 24 

elements, we will only have 𝑏 = 5 different data blocks. 
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monthly index returns (from January 1970 to December 2023), we have 𝑁 − 𝑙 + 1 = 613 over-

lapping data blocks of the form: {(𝑋1, … , 𝑋36), (𝑋2, … , 𝑋37), … , (𝑋613, … , 𝑋648)}. To construct 

𝑁 = 648, we draw 𝑏 = 18 blocks (𝑙 × 𝑏 = 36 × 18 = 648) with replacement from the set of 

613 available blocks. This is achieved by generating 18 random integers ranging from 1 to 613, 

each with equal probability, and using them as indices to select the corresponding blocks. Be-

cause selection is with replacement, some blocks may be chosen multiple times. The concate-

nation of the eighteen blocks forms the bootstrap sample, preserving local temporal dependence 

structures. We then calculate the statistic of interest — the maximum drawdown 𝑀𝐷𝐷̂∗. Re-

peating this procedure multiple times yields an empirical distribution of the estimated maxi-

mum drawdown. 

A main drawback of the moving block bootstrap is the non-stationarity problem, because 

the elements {𝑋1, … , 𝑋𝑁} have different probabilities for being selected in our subsamples. For 

example, the first sample element, 𝑋1, is only part of a subsample when the first block is drawn. 

In contrast, 𝑋2 is part of the subsample when either the first or second block is chosen (and so 

on). In general, elements at the beginning or end of our sample are less likely to be included in 

the resamples than those in the middle.10 

As a third bootstrap method, we also use the stationary bootstrap approach of Politis and 

Romano (1994), hereafter referred to as PR, to overcome this problem. In contrast to the moving 

block bootstrap, where block length 𝑙 is fixed, PR derives the length of block 𝑘 (𝑙𝑘) from a 

                                                           
10 An example can help to illustrate this problem. Imagine we have ten return values labelled from 1 to 10 and 

select data blocks of length three. In this case, eight different data blocks can be selected: (1;2;3), (2;3;4), (3;4;5), 

(4;5;6), (5;6;7), (6;7;8), (7;8;9), and (8;9;10). Each block has an equal probability of being selected, i.e. 1/8 = 

0.125. However, the probability of selecting each of the ten elements is not equal. For instance, there is only one 

scenario in which the first and last elements will be selected. The first (last) element is chosen only when the first 

(eighth) block is chosen. The second and ninth elements can be selected in two scenarios (blocks 1 and 2, and 

blocks 7 and 8, respectively). All the other elements (3, 4, 5, 6, 7 and 8) have a threefold chance of being selected. 

Clearly, elements closer to the left and right sample boundaries are less likely to be selected than those in the 

middle. 
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geometric distribution with probability 𝑝. Accordingly, mean block length 𝑙 ̅equals 1/𝑝. If we 

specify average block length 𝑙,̅ the corresponding probability p equals 1/𝑙.̅ 

The algorithm of the stationary bootstrap from PR is as follows: In the first step, we gen-

erate a random integer number 𝑖 between 1 and 𝑁. This number specifies the first element we 

draw, 𝑋𝑖
∗. In the next step, we generate a uniform random number, 𝑗 ∈ [0; 1). If 𝑗 ≥ 𝑝, we select 

the next element 𝑋𝑖+1
∗ , and add it to the existing data block (with element 𝑋𝑖

∗). However, if 𝑗 <

𝑝, we generate a new random integer 𝑖 between 1 and 𝑁 and start a new data block. The proce-

dure ends when our linked data blocks yield a sample with 𝑁 elements {𝑋1
∗, … , 𝑋𝑁

∗ }. 

The main advantage of this bootstrap method is its circular sampling structure. If element 

𝑋𝑁 is selected as a sample element and the current data block is enhanced, the next element can 

“wrap around” to element 𝑋1 and the following elements. Therefore, unlike a moving block 

bootstrap, this method is not affected by non-stationarity bias because all return observations 

have equal selection probabilities. 

The implementation of the PR stationary bootstrap is relatively simple. Unlike the moving 

block bootstrap, which uses a fixed block size, the PR bootstrap uses random block lengths 

drawn from a geometric distribution. The length of each block 𝑙𝑘 is chosen stochastically based 

on a geometric distribution, determined by the geometric parameter 𝑝. For example, if the ex-

pected block length is 𝑙 ̅ = 36, then 𝑝 = 1 36⁄ = 0.027777. The procedure starts with the ran-

dom selection of an initial index from the set {1, … ,648}, which corresponds to a starting point 

in our monthly return series. Assume that we select the monthly return at position fifty. At each 

subsequent step, we draw a uniform random number 𝑗 ∈ [0; 1). If 𝑗 ≥ 𝑝, the next return in the 

sequence is added to the current block. In our example, this is the monthly return at position 

fifty-one. However, if 𝑗 < 𝑝, we create a new block by drawing a new integer number uniformly 

at random from the full set of indices. This algorithm provides block of monthly returns with a 

mean block size of thirty-six elements. 
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To ensure continuity in the event of edge cases, for example, if the last selected index is 

648 and the algorithm calls for the “next” return, the method wraps around a circle to the start 

of the original series, i.e., the monthly return at position 1. This circular resampling mechanism 

ensures that each element has an equal selection probability, thereby preserving the stationarity 

assumption. The algorithm stops when 648 returns have been selected to form one bootstrap 

resample of monthly returns, after which the maximum drawdown 𝑀𝐷𝐷̂∗ is computed. Repeat-

ing this procedure many times produces an empirical distribution of the estimated MDD. 

3.2 Evaluation criteria 

In contrast to the Efron bootstrap, the moving block bootstrap and the stationary bootstrap 

require the specification of a block length. We follow the literature and choose values of twelve, 

twenty-four, and thirty-six months.11 We can thus infer the effect of block length on our simu-

lation results. All simulations are based on 𝐵 = 1,000 runs.12 We calculate the mean MDD 

over all B simulation runs and compare the results with the true (population) MDD. The differ-

ence between the mean of all B bootstrapped statistics and the “plug-in” estimator of observed 

values represents the estimated bias of a bootstrap approach (Efron and Tibshirani, 1994): 

𝑏𝑖𝑎𝑠̂𝐵 = 1 𝐵⁄ ∑ 𝜃𝑗
∗ − 𝜃𝐵

𝑗  → 𝑏𝑖𝑎𝑠̂𝐵 = 1 𝐵⁄ ∑ 𝑀𝐷𝐷̂𝑗
∗ − 𝑀𝐷𝐷̂𝐵

𝑗       (1) 

Our first evaluation criterion is the estimated bias based on means, defined in equation 

(1). However, due to the mean statistic’s sensitivity to outliers, we also evaluate the median 

statistic, which is less sensitive to outliers. 

Arnott et al. (2019) measure the percentage of simulation runs that produce a worse MDD 

than that observed. We also provide this statistic, denoting it as “% < real MDD.” Under perfect 

                                                           
11 There exist specific algorithms for computing optimal block length. However, they strongly depend on specific 

simulation contexts, which are not comparable to our application (Cogneau and Zakamouline, 2013). Arnott et al. 

(2019) use a block length of twelve months, Van Hemert et al. (2020) use twenty-four months, and Khang et al. 

(2023) use thirty-six months. 
12 We are able to attain sufficiently robust results with 1,000 simulation runs. 
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simulation conditions, 50% of all simulated values are expected to be above the population 

value and 50% below. If there are deviations, we strictly prefer overestimation of the population 

MDD to underestimation. When overestimating the true MDD, we potentially forego upside by 

calibrating the risk of a strategy too conservatively or by applying costly hedging strategies. 

Conversely, underestimating the true MDD may lead to losses for drawdown-sensitive inves-

tors, such as insurance companies and pension funds, that exceed their risk limits and force 

them to sell risky assets at the worst possible moment. 

Efron and Tibshirani (1994) measure the asymmetry of the interval around the point es-

timate 𝜃 (𝑀𝐷𝐷̂). The so-called “shape” measure is defined as: 𝑠ℎ𝑎𝑝𝑒 =
𝜃̂𝑢𝑝−𝜃̂

𝜃̂−𝜃̂𝑙𝑜
, where 𝜃𝑢𝑝 and 

𝜃𝑙𝑜 represent the upper and lower quantile, respectively. For example, considering a 90% con-

fidence interval, shape is defined as 
𝜃̂0.95−𝜃̂

𝜃̂−𝜃̂0.05
. Given 𝐵 = 1,000 bootstrapped MDD values, 𝜃0.05 

labels the 5%-quantile and 𝜃0.95 the 95%-quantile. A 𝑠ℎ𝑎𝑝𝑒 < 1 indicates greater distance from 

𝜃 to 𝜃0.05 than from 𝜃0.95 to 𝜃, which is desirable if we prefer an overestimation of the true 

MDD over an underestimation. In contrast, a 𝑠ℎ𝑎𝑝𝑒 > 1 indicates an underestimation of the 

true MDD. We also report the mean squared error (MSE): 𝑀𝑆𝐸(𝜃∗; 𝜃) = 𝐸 ([𝜃∗ − 𝜃]
2

). With 

𝐵 = 1,000 bootstrapped 𝑀𝐷𝐷̂∗ values, the MSE is 1 1000⁄ × ∑ (𝑀𝐷𝐷̂𝑖
∗ − 𝑀𝐷𝐷̂)

21000
𝑖=1 , where 

𝑀𝐷𝐷̂ denotes the population MDD. This measure is purely informational and provides no evi-

dence of over- or underestimation of the true MDD.13 

Our bootstrap simulations provide not only a single statistical measure (e.g., the mean or 

median MDD), but the complete distribution of the MDD as well. We therefore also compare 

the MDD distributions resulting from the various bootstrap simulations in terms of stochastic 

dominance (SD), using a suitable hypothesis test. To account for serial dependence in the data, 

                                                           
13 Efron and Tibshirani (1994) discuss how the mean squared error (MSE) can be split into its two components: 

squared bias and variance. However, these measures do not provide any additional insight into our analysis. 
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we apply the SD test proposed by Linton et al. (2005). In particular, we test the null hypothesis 

that prospect 𝑦 (with data points {𝑋𝑦,1, … , 𝑋𝑦,𝑁}) statistically dominates prospect 𝑧 (with data 

points {𝑋𝑧,1, … , 𝑋𝑧,𝑁}) at degree s (i.e., 𝑠 = 1,2, …). In our context, the prospect 𝑦 and 𝑧 are two 

different bootstrap methods (e.g., the Efron and the moving block approaches), which should 

be compared in terms of their 𝐵 = 1,000 bootstrapped 𝑀𝐷𝐷̂∗ values. 

Since most of the literature formulates the SD assumption in the null hypothesis (Barrett 

and Donald, 2003; Lee and Whang, 2023), we follow this approach. In particular, the test sta-

tistic is defined as (Linton et al., 2005): 

𝑇𝑁
(𝑠)(𝑦) = 𝑠𝑢𝑝𝑥∈𝜒√𝑁[𝐷̂𝑦

(𝑠)(𝑥) − 𝐷̂𝑧
(𝑠)(𝑥)].          (2) 

Since we only test for first-order stochastic dominance (𝑠 = 1), 𝐷̂𝑦
(𝑠)(𝑥) represents the 

cumulative distribution of our prospect 𝑦 (which is 𝑧 analogous): 

𝐷̂𝑦
(1)(𝑥) = 𝐹̂𝑦,𝑁(𝑥) =

1

𝑁
∑ 1(𝑋𝑦,𝑖 < 𝑥)𝑁

𝑖=1 .          (3) 

In equation (2), 𝜒 is the union of the support sets of the two distributions 𝐹̂𝑦,𝑁 and 𝐹̂𝑧,𝑁. 

In equation (3), 1(∙) is the indicator function. To derive the distribution of the test statistic, we 

generate 𝑁 − 𝑙 + 1 subsamples S with block length l: 𝑆1 = {(𝑋𝑦,1; 𝑋𝑧,1), … , (𝑋𝑦,𝑙; 𝑋𝑧,𝑙)}, 𝑆2 =

{(𝑋𝑦,2; 𝑋𝑧,2), … , (𝑋𝑦,𝑙+1; 𝑋𝑧,𝑙+1)},…, 𝑆𝑁−𝑙+1{(𝑋𝑦,𝑁−𝑙+1; 𝑋𝑧,𝑁−𝑙+1), … , (𝑋𝑦,𝑁; 𝑋𝑧,𝑁)}. For each 

𝑁 − 𝑙 + 1 subsample, we compute the test statistic 𝑡𝑙
(1)(𝑦) defined in Equation (2).14 With 𝑀 =

𝑁 − 𝑙 + 1, the p-value of the test, 𝑝̂𝑀
(1)(𝑦), can be determined as (Linton et al., 2005): 

𝑝̂𝑀
(1)(𝑦) =

1

𝑁−𝑙+1
∑ 1 (𝑡𝑙,𝑖

(1)(𝑦) > 𝑇𝑁
(1)(𝑦))𝑁−𝑙+1

𝑖=1 .         (4) 

                                                           
14 In this case, we multiply by √𝑙 rather than √𝑁 (as in equation (2)). 
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Based on equation (4), large values of the test statistic 𝑇𝑁
(1)(𝑦) will lead to low p-values 

𝑝̂𝑀
(1)(𝑦), suggesting the alternative hypothesis “No stochastic dominance at degree one.” 

As already explained, one issue with the moving block bootstrap, as applied in Linton et 

al.’s (2005) SD test, is that observations at the beginning or end of a return series are less likely 

to be included in the bootstrapped samples. To mitigate this problem, Kläver (2006) proposes 

the use of the circular block bootstrap method (Politis and Romano, 1992), adding 𝑙 − 1 addi-

tional blocks to the data blocks from the moving block bootstrap: 𝑆𝑁−𝑙+2 =

{(𝑋𝑦,𝑁−𝑙+2; 𝑋𝑧,𝑁−𝑙+2), … , (𝑋𝑦,1; 𝑋𝑧,1)}, 𝑆𝑁−𝑙+3 = {(𝑋𝑦,𝑁−𝑙+3; 𝑋𝑧,𝑁−𝑙+3), … , (𝑋𝑦,2; 𝑋𝑧,2)}, …, 

𝑆𝑁 = {(𝑋𝑦,𝑁; 𝑋𝑧,𝑁), … , (𝑋𝑦,𝑙−1; 𝑋𝑧,𝑙−1)}. Equation (4) can be written as follows based on these 

𝑁 data blocks: 

𝑝̂𝑁
(1)(𝑦) =

1

𝑁
∑ 1 (𝑡𝑙,𝑖

(1)(𝑦) > 𝑇𝑁
(1)(𝑦))𝑁

𝑖=1 .          (5) 

To parameterize our stochastic dominance tests, we follow Lee and Whang (2023) for the 

union of the support sets 𝜒 and underlay 100 equally spaced grid points. Following Kläver, we 

determine the block length as 𝑙(𝑁) = 10√𝑁. With 𝑁 = 1,000 data points (simulation runs), 

the block length is set to 316. 

4. Simulation results 

4.1 Main simulation results and stochastic dominance tests 

Exhibit 3 presents our main simulation results for the MSCI World Index (Panel A) and 

for Bitcoin (Panel B). Using the Efron bootstrap method, the population MDD is severely un-

derestimated in Panel A: while the MDD on global stock markets is -53.65%, the mean boot-

strapped MDD is -39.50% and the median MDD is -38.30%. The statistic “% < real MDD” 

indicates that the absolute value of the bootstrapped MDD is higher than that of the true MDD 

in only 7.5% of the 1,000 bootstrap simulation runs. For a 90% confidence interval, we observe 

a high shape value of 9.88. This implies that most of the observations between the 5% and 95% 
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quantiles lie within the interval [−53.65%; −27.61%], with very few lying within the interval 

[−56.28%; −53.65%]. In other words, the Efron bootstrap generates many more underesti-

mations than overestimations of the true MDD. 

Using the moving block bootstrap method, notably higher mean and median MDD values 

are observed for all three block lengths compared to the simple Efron method. When analysing 

the percentage overestimation of the population MDD, the “% < real MDD” metric now ranges 

from 31% (with a block length of twelve months) to 42.2% (with a block length of thirty-six 

months) across the 1,000 simulation runs. These figures for the MB method are more favourable 

than those for the Efron bootstrap method, where the MDD (in absolute values) is higher than 

the true MDD in only 7.5% of the 1,000 bootstrap simulation runs. This result is also supported 

by the shape statistic, which is much lower for the MB method than for the Efron bootstrap in 

all three cases (1.70, 1.38, and 1.42 versus 9.88). 

[Insert Exhibit 3 here] 

Similar results are obtained for the stationary bootstrap. The mean MDD is moderately 

below the population MDD (-53.65%) for all three block lengths, while the median MDD ex-

actly matches the true MDD for twenty-four- and thirty-six-month block lengths. In terms of 

overestimating the true MDD, the PR method performs slightly more favourable than the MB 

method for twelve-month block lengths (33.7% vs. 31.0%), but this result is not replicated for 

twenty-four- or thirty-six-month block lengths. As expected, comparing mean squared errors, 

the MSE values are lower for both the MB method and the PR method than for the Efron boot-

strap. However, the MSEs are consistently lower for the PR method than for the MB method 

across all three block lengths. Overall, these findings seem to suggest that a block length of 

thirty-six months is preferable to twelve months in the context of MDD simulation. 

Panel B shows the corresponding simulation results for Bitcoin. Once again, the Efron 

bootstrap leads to an underestimation of the population MDD. While the true MDD is -79.77%, 



16 

the mean resampled MDD is -75.90% and the median is -76.11%. Moreover, the absolute value 

of the simulated MDD exceeds its true value in only 38% of the 1,000 simulations. In all other 

simulation setups, whether using the MB or PR method, the mean MDD is slightly higher than 

80%, thus being close to the population MDD. As one would expect, the percentage overesti-

mation of the true MDD, as indicated by the “% < real MDD” metric, fluctuates around 50%. 

As explained above, the main advantage of bootstrap simulations is that, in addition to 

providing estimates of statistical moments (such as mean and median), they offer a full distri-

bution of the parameters of interest. Exhibit 4 shows the quantiles ranging from 10% (Q(10)) 

to 90% (Q(90)) for the MSCI World Index (Panel A) and Bitcoin (Panel B). For the MB and 

the PR methods, where we have assumed block lengths of 12, 24, and 36 months, we now select 

the least biased versions for the comparison. As discussed in Section 3.2, this is the bootstrap 

method where the mean MDD over all 1,000 bootstrap runs is closest to the population MDD 

(with 𝑏𝑖𝑎𝑠̂ = 1 1000⁄ ∑ 𝑀𝐷𝐷̂𝑗
∗ − 𝑀𝐷𝐷̂1000

𝑗 ). As can be inferred from Exhibit 3 above, for both 

the MSCI World Index and Bitcoin, the optimal block length is 36 months, labelled as MB36 

and PR36 methods, respectively. 

[Insert Exhibit 4 here] 

Panel A confirms that the median MDD (Q50) of the Efron simulation (-38.30%) signif-

icantly underestimates the population MBB (-53.65%), whereas the MB36 and PR36 methods 

precisely match the true MDD. This underestimation holds not only for the median MDD, but 

for the entire distribution of the MDD. For all quantiles, the values estimated using the Efron 

bootstrap are consistently lower than those based on the MB36 and PR36 methods. 

Next, to verify the statistical significance of our results, we conduct stochastic dominance 

tests.15 We test three relationships for first-order stochastic dominance. First, we compare the 

                                                           
15 We conduct our SD tests using the free Python package, PySDTest, provided by Lee and Whang (2023). We are 

grateful to both authors for providing this powerful toolbox. 
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MB36 and PR36 methods with the Efron bootstrap; the null hypotheses for first-order stochastic 

dominance are 𝑀𝐷𝐷𝑀𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 and 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛. Second, we test 

whether the PR36 method stochastically dominates the MB36 method; in this case, the corre-

sponding null hypothesis is 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36. 

The results for the MSCI World Index (Panel A) suggest that the null hypothesis of first-

order stochastic dominance of the MB36 and PR36 methods against the Efron bootstrap cannot 

be rejected at the usual 5% statistical significance level. The p-value for not rejecting the null 

hypothesis of stochastic dominance for the PR36 method is much higher than that for the MB36 

method (1.00 vs. 0.12). Nevertheless, when PR36 is tested against MB36, the null hypothesis 

is rejected, with a p-value of 0.00. This indicates that the moving block bootstrap is not first-

order stochastically dominated by the stationary bootstrap. 

The results for Bitcoin (Panel B) are not as clear. For the higher quantiles (Q(40) to 

Q(90)), the MB36 and PR36 methods produce higher estimated MDDs than the Efron bootstrap 

method. The reverse is true for lower quantiles (Q(10) to Q(30)). In such ambiguous cases, a 

test for stochastic dominance can provide valuable insights. The null hypothesis that the MB36 

method dominates the Efron bootstrap must be rejected at the 5% significance level (with a p-

value of 0.00). However, the opposite holds for the PR36 method; comparing PR36 with the 

Efron bootstrap, the p-value of 0.18 fails to reach standard levels of statistical significance. But 

most important, directly comparing PR36 with MB36, the null hypothesis of first-order domi-

nance, written as 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36, cannot be rejected (with a p-value of 0.16). 

To illustrate these findings for Bitcoin more clearly, we plot the cumulative distribution 

functions (CDFs) for the two stochastic dominance tests. Exhibit 5, Panel A, shows the CDFs 

of maximum drawdown for the MB method and the Efron bootstrap. The horizontal axis rep-

resents the absolute value of MDD, while the vertical axis indicates the cumulative distribution. 

The MB method exhibits strong dominance up to a probability of around 80%. From this point 
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onwards, dominance shifts in favour of the Efron bootstrap: when drawdowns become very 

large, the MB method provides lower MDD estimates than the Efron bootstrap. This explains 

why the null hypothesis of first-order stochastic dominance (𝑀𝐷𝐷𝑀𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛) must 

be rejected. In Panel B, the effects of very large drawdowns are less pronounced in the compar-

ison between the PR method and the Efron bootstrap, and thus the null hypothesis of first-order 

stochastic dominance (𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛) cannot be rejected in this case.16 

[Insert Exhibit 5 here] 

4.2 The role of autocorrelation 

As Fama and French (2018a) emphasise, low autocorrelation in time series data may jus-

tify applying the standard bootstrap, which depends on the independence and identically dis-

tributed (i.i.d.) assumption. They argue that “[…] independence is a good approximation. Au-

tocorrelations of monthly returns are close to zero” (p. 235). Nevertheless, the absence of auto-

correlation does not necessarily imply that neighbouring data points are independent. Autocor-

relation only measures the degree of linear cohesion, failing to capture more complex or non-

linear temporal structures in the data. This distinction is particularly pertinent in our context, 

given that the risk metric under consideration — maximum drawdown, which is defined as the 

maximum loss from a peak to a trough over a given time horizon — is highly sensitive to the 

temporal clustering of large negative returns. When such extreme returns are interspersed with 

large positive returns, the MDD declines or even vanishes. This “dilution” effect precisely 

                                                           
16 As can be seen in Exhibit 5, the cumulative distribution function of the Efron bootstrap is much smoother than 

those of the MB and PR methods. There are 148 monthly Bitcoin returns (from September 2011 to December 

2023). For the Efron bootstrap, 148 monthly returns are randomly selected with replacement. To obtain 148 num-

bers using the MB method, a total of five data blocks are selected with replacement: four blocks containing thirty-

six monthly returns each and one block containing four monthly returns. Due to the occurrence of many severe 

drawdowns within a short period of time in the data (see Panel B in Exhibit 2), there is a high probability that the 

MB method will produce a simulated MDD close to the population MDD. This phenomenon is evident in Panel B 

of Exhibit 5, where a significant increase in the cumulative distribution function for the MB simulations is observed 

at the MDD with an absolute value of 79.77%. 
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occurs when returns are resampled independently under the i.i.d. assumption of the Efron boot-

strap. As shown above, this method systematically underestimates the true MDD. 

In light of this finding, it is crucial to determine whether the presence of statistically sig-

nificant autocorrelation should be regarded as an indication that the i.i.d.-based bootstrap is not 

suitable for risk measures such as MDD. We calculate the first-order autocorrelations for the 

MSCI World Index and Bitcoin. For the MSCI World Index, we measure a first-order autocor-

relation of 0.062 for the series of monthly simple returns ranging from January 1970 to Decem-

ber 2023. As this value lies within the 95% confidence interval around zero (CI [-0.115; 0.115]), 

the null hypothesis of no autocorrelation cannot be rejected. For the Bitcoin return series from 

September 2011 to December 2023, the autocorrelation coefficient is 0.115, which is again-

within the 95% confidence interval around zero (CI [-0.161; 0.161]). 

To gain further insights into the serial dependence of monthly returns, we measure the 

rolling thirty-six-month first-order autocorrelations of the MSCI World Index and Bitcoin re-

turns. Exhibit 6, Panel A, illustrates the dynamics of MSCI World Index returns from January 

2000 to December 2023. This time period encompasses the two largest drawdowns. With only 

a few exceptions, first-order autocorrelations are not significantly different from zero. Panel B 

illustrates the same analysis for Bitcoin. Once again, the rolling autocorrelation coefficients are, 

in most cases, not significantly different from zero in a statistical sense. In light of these find-

ings, the idea that low (or almost non-existent) autocorrelation justifies the use of the Efron 

bootstrap appears to be a non-viable conclusion, at least in the context of MDD analyses. 

[Insert Exhibit 6 here] 

4.3 The non-stationarity problem 

As discussed above, a key limitation of the moving block bootstrap is the non-stationarity 

problem. Elements at the left and right boundaries of the sample are less likely to be selected 

than those in the middle. In our context, this implies that we should expect the population MDD 
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to be underestimated using moving block bootstrap simulations if the largest drawdown occurs 

at the beginning or end of the sample. To examine this scenario, we truncate our MSCI World 

Index sample in February 2009, when drawdowns reach their peak during the global financial 

crisis, and repeat our simulation analyses. 

Exhibit 7 shows the results. Once again, the Efron bootstrap leads to an underestimation 

of the population MDD (-53.65%), as indicated by both the mean MDD (-39.22%) and the 

median MDD (-38.14%).17 As expected, given that the global financial crisis is now at the end 

of the truncated sample, there is also a significant underestimation of the MDD for the MB 

method using block lengths of twelve, twenty-four and thirty-six months. The simulated mean 

MDDs range from -43.70% (twenty-four months) to -44.68% (thirty-six months), while the 

median values range from -42.21% (twenty-four months) to -44.58% (thirty-six months). All 

values clearly underestimate the population MDD of -53.65%, indicating that the non-station-

arity problem is now occurring severely in the truncated sample. The poor estimation quality 

of the MB method is confirmed by our two additional statistics: “% < real MDD” and shape. 

Notably, for all three block lengths, the percentage of simulation runs with an MDD higher (in 

absolute terms) than the population MDD is below 20% (19.8% for a block length of twelve 

months and 16.8% for a block length of thirty-six months). The corresponding value for the 

shape statistic is greater than one in all three cases (2.56, 2.82, and 2.97), which also indicates 

an underestimation of the population MDD. 

[Insert Exhibit 7 here] 

Most importantly, when the results of the MB and PR methods are compared, the latter 

performs better; for all three block lengths, its mean MDD is much closer to the population 

MDD in the truncated sample. The estimation error results from a moderate degree of 

                                                           
17 This result is also supported by the percentage of simulation runs, in which MDD is larger than real-world MDD. 

At 7.30%, this value is much lower than a 50% chance of overestimation. 
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overestimation, which we view as more preferable than an underestimation (see the discussion 

above). For all three block lengths, the PR method provides absolute MDD values that are in 

57.5% to 61.5% of all simulation runs larger than the population MDD. As expected, this is 

further reflected in shape statistics below 1. 

Panel B shows the quantiles of the simulated MDD values. Based on the bias minimisation 

criterion (see Section 3.2 above for details), we compare the moving block bootstrap method 

with a block length of thirty-six months (MB36) with the stationary bootstrap method with an 

expected block length of twelve months (PR12). Underestimation of MDD using MB36 com-

pared to PR12 is observable not only for the mean and median MDDs, but for the entire distri-

bution of the MDD. This is confirmed by the first-order stochastic dominance test: as expected, 

the null hypothesis 𝑀𝐷𝐷𝑃𝑅12 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36 cannot be rejected (with a p-value of 1.0). 

5. Robustness tests 

5.1. The non-stationarity problem revisited 

To shed further light on the severity of the non-stationarity problem when using the mov-

ing block bootstrap method, we implement additional simulations to ensure robustness. As the 

truncated sample analysis is not applicable to Bitcoin, we repeated our bootstrap simulations 

using the Nasdaq 100 Index.18 For this stock market index, monthly price data are available 

from January 1983 onwards. Unlike the MSCI World Index, the Nasdaq 100 Index experienced 

its maximum drawdown when the dotcom bubble burst. From March 2000 to September 2002, 

the index lost 81.07% of its value. It took until February 2015 for the index to fully recover 

from this massive drawdown, approximately twelve years after the MDD occurred. To illustrate 

                                                           
18 With only 148 monthly returns, our Bitcoin sample size is small. Therefore, it is not feasible to limit the sample 

further by shifting the MDD to the left or right borders. In addition to the MDD with a loss of -79.77%, there are 

two other severe drawdowns with losses of -76.20% and -73.35%. If the returns associated with the maximum 

drawdown are not chosen because of non-stationarity, selecting from these other severe drawdowns instead may 

lead to simulated MDDs that are very close to the population drawdown, i.e., the potential negative effects of the 

non-stationarity problem do not show up. 
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the negative effects of the non-stationarity problem in combination with the moving block boot-

strap once again, we truncate the Nasdaq 100 Index return series so that the MDD lies either at 

the end (using data from February 1983 to September 2002) or at the beginning (using data 

from January 2000 to December 2023) of the sample. 

The results are shown in Exhibits 8 and 9, respectively. In both cases, the Efron bootstrap 

dramatically underestimates the population MDD, as indicated by the mean and median of the 

resampled MDDs (in absolute terms). In approximately 5% of all simulations runs, the absolute 

value of the bootstrapped MDD is higher than the population value (4.8% in Exhibit 8, Panel 

A, and 4.4% in Exhibit 9, Panel A).19 The non-stationarity problem is clearly visible for the 

moving block bootstrap. In Exhibit 8, Panel A, the mean MDD ranges from -62.88% (block 

length of twelve months) to -54.64% (block length of thirty-six months). In absolute terms, all 

these values are below the population MDD of -81.07%. Using a block length of thirty-six 

months, the simulated MDD underestimates the population MDD in 94.70% of all simulation 

runs (as indicated by the “% < real MDD” statistic).20 Most important, compared with the MB 

method, the PR method yields higher mean and median MDD values. While the simulated mean 

MDD remains lower than the population MDD when using a block length of thirty-six months, 

the median MDD is -78.08%, close to the population MDD of -81.07%. Moreover, the simu-

lated MDD is higher than the population MDD in 44.30% of all simulation runs. 

[Insert Exhibit 8 and Exhibit 9 here] 

Exhibit 8, Panel B, illustrates the distribution of the MDD values for the Efron bootstrap, 

the MB12 method (with a block length of twelve months), and the PR36 method (with a block 

                                                           
19 In Exhibit 8, the shape statistic becomes -58.85. This negative value is due to the 5% quantile (-80.35%) being 

below the real MDD of -81.07%. With these numbers, the denominator in the shape formula becomes negative 
(−81.07 − (−80.35) = −0.72). 
20 The moving block bootstrap yields a value of 655.68 for the shape statistic. This high value is due to the 5% 

quantile (-81.15%) being close to the population MDD (-81.07%). Given these numbers, the denominator in the 

shape statistic is computed as (−81.07 − (−81.15) = 0.08), resulting in a very high shape statistic. 
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length of thirty-six months). The PR36 method clearly outperforms both the Efron bootstrap 

and the MB12 method for almost all quantiles. However, at the 90th percentile, the PR method 

provides a lower MDD estimate than the two competing methods. Therefore, based on the test 

statistics for tests of first-order stochastic dominance, the two null hypotheses that the stationary 

bootstrap (PR36) dominates the moving block method (MB12) as well as the Efron bootstrap 

must be rejected. Panel C shows the cumulative distribution functions underlying the test of the 

null hypothesis 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵12. 

Similar results are obtained in Exhibit 9 under the assumption that the maximum draw-

down occurs at the beginning of a truncated sample. Panel A shows that the Efron bootstrap 

and the MB method underestimate the population MDD. As the block length increases, the 

mean and median MDDs (in absolute terms) of the MB method decrease. In about 80% of the 

simulation runs, the MB method delivers a resampled MDD that is below the population MDD. 

In contrast, the median MDD under the PR method with a thirty-six-month block length is -

78.48%, again relatively close to the population MDD of -81.07%. In this case, the simulated 

MDD is higher than the population MDD (in absolute terms) in 39.9% of all bootstrap runs. As 

shown in Panel B, the null hypothesis of first-order stochastic dominance of the PR36 method 

against the Efron bootstrap cannot be rejected. However, the null hypothesis of first-order sto-

chastic dominance of the PR36 method against the MB12 method (𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵12) 

must be rejected again. A graphical visualization of this comparison is shown in Panel C. 

Overall, the simulation results based on truncated samples of the Nasdaq 100 Index sug-

gest that the moving block bootstrap is limited by the non-stationarity problem. Elements at the 

left or right boundaries of the sample are less likely to be selected than those in the middle, 

which leads to resampling bias. The stationary bootstrap provides more accurate risk classifi-

cations, regardless of when the maximum drawdown occurs during the sample period. 

5.2 Alternative bootstrap methods for dependent data 
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In our main analysis, we employ three bootstrap simulation techniques, which have been 

applied in various contexts in the asset management literature (Arnott et al., 2019; Anarkulova 

et al., 2022; Khang et al., 2023). These methods can be regarded as standard tools in quantitative 

investment research. In this section, we test alternative bootstrap procedures suitable for de-

pendent data, which could potentially improve MDD estimations further. Specifically, we em-

ploy the block-block bootstrap approach proposed by Andrews (2004) and the tapered block 

bootstrap method introduced by Paparoditis and Politis (2001). 

The block-block bootstrap: The block-block bootstrap, introduced by Andrews (2004), 

addresses asymptotic shortcomings of the standard block bootstrap. The non-parametric i.i.d. 

Efron (1979) bootstrap as well as parametric bootstrapping typically have superior asymptotic 

properties compared to the block bootstrap approach. This is due to the join-point problem, 

which arises when the independence between the blocks in the block bootstrap does not reflect 

the dependence structure of the original sample. To solve this problem, the block-block boot-

strap does not modify the block bootstrap algorithm itself. Instead, it alters the sample statistic 

to which the block bootstrap is applied. 

Andrews (2004) introduces block statistics (for the original sample) that have join-point 

features that resemble those of the block bootstrap versions of these statistics. Join-points occur 

at positions 𝑙 + 1, 2 × 𝑙 + 1, … , (𝑏 − 1) × 𝑙 + 1, where 𝑙 is the block length, and 𝑏 denotes the 

number of blocks such that 𝑙 × 𝑏 = 𝑁 (the total sample size). Before each join-point, [𝜋 × 𝑙] 

observations are removed. [𝜋 × 𝑙] denotes the smallest integer greater than or equal to 𝜋 × 𝑙, 

where 𝜋 represents the proportion of observations that are deleted from the bootstrapped sam-

ples and the observed sequence (Iglesias, 2013), and [∙] is the ceiling function. This adjustment 

ensures that the last non-zero element of one block is separated from the first element of the 

subsequent block, thereby addressing the join-point problem and improving asymptotic behav-

iour. Implementation of the block-block bootstrap requires to specify the block length 𝑙 and the 
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deletion fraction 𝜋. Following Andrews (2004), we set 𝜋 = 0.125.21 For example, with a block 

length of thirty-six months (𝑙 = 36), 𝜋𝑙 = 0.125 × 36 = 4.5 and [𝜋 × 𝑙] = 5. As before, we 

implement the overlapping (moving block) bootstrap proposed by Künsch (1989)22 and apply 

the deletion procedure to the observed sequence and the bootstrapped samples. 

The simulation setup for the MSCI World Index is identical to that described above. Panel 

A in Exhibit 10 shows the simulation results using the full sample period from January 1970 to 

December 2023, and Panel B those using the truncated sample that ranges from January 1970 

to February 2009, when the drawdowns reached their peak during the global financial crisis. 

The block-block bootstrap (BBB) is implemented with block lengths of 12, 24, and 36 months. 

To properly assess the BBB method, we select the least biased methods from the corresponding 

simulations above as benchmarks; the MB36 method for the full sample period (see Panel A in 

Exhibit 3) and the PR12 method for the truncated sample period (see Panel A in Exhibit 7). 

[Insert Exhibit 10 here] 

The first column in Exhibit 10, Panel A, contains the population MDD values, which – 

because of the way the BBB method is constructed – are also modified. Comparing mean and 

median MDD values of the three BBB specifications with the corresponding values of MB36 

as well as the “true” population MDD, there is a tendency to underestimate. Underestimation is 

only moderate for the BBB36 approach. Starting from the population MDD of -53.65%, the 

mean MDD of MB36 is -51.50%, and the mean MDD of BBB36 is -49.98%. While the median 

MDD of MB36 matches exactly the true parameter (-53.65%), the median MDD of BBB36 is 

marginally lower (-53.25%) in absolute terms. Nevertheless, the null hypothesis of first-order 

stochastic dominance of MB36 over BBB36 cannot be rejected (with a p-value of 0.22). 

                                                           
21 Andrews (2004) suggests a data-dependent nested bootstrap procedure for selecting (𝑙, 𝜋), which can be time-

consuming to implement. We leave the application of such methods in asset management for future research. 
22 The block-block bootstrap can be applied with both the non-overlapping block bootstrap (Carlstein, 1986) and 

the overlapping moving block bootstrap (Künsch, 1989). See Andrews (2004) and Iglesias (2013) for details. 
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Next, the results for the truncated sample in Panel B indicate all three BBB specifications 

lead to an underestimation of the population MDD. All mean and median MDD values are 

around -40.0%, which, in absolute terms, is well below the true value of -53.65%. In other 

words, the block-block bootstrap method does not perform any better than the standard moving 

block bootstrap (see Exhibit 7 for the results of the MB method for the truncated sample). The 

opposite is true for the PR12 method. The mean and median MDD values are -54.31% and -

56.27%, respectively, and both are close to the population MDD value of -53.65%. This result 

is further supported by the number of simulated MDD values that are below the population 

MDD (see column “% < real MDD”). For all three BBB specifications, the resulting MDD 

underestimates the population MDD in roughly 90% of all simulation runs. For the PR12 

method, underestimation occurs in only 43.4% of all simulation runs, a percentage that is close 

to the expected value of 50%. Therefore, it seems consistent that the null hypothesis of first-

order stochastic dominance of PR12 against BBB36 cannot be rejected (with a p-value of 1.00).  

In the context of MDD estimation for portfolio management decisions, our findings sug-

gest that, overall, Andrew’s (2004) block-block bootstrap method produces inferior results 

compared to the moving block and stationary bootstrap methods, both of which are well-estab-

lished in the asset management literature. 

The tapered block bootstrap: Another alternative to the block bootstrap for dependent 

data is the tapered block bootstrap of Paparoditis and Politis (2001). They demonstrate that the 

tapered block bootstrap outperforms the traditional block bootstrap of Künsch (1989), particu-

larly with regard to reducing the asymptotic bias in time series data. The main idea of the ta-

pered bootstrap is to assign diminishing weights to observations near the endpoints of each data 

block, i.e., the first and the last elements of a data block are down-weighted. Let ℎ be the index 

of all the elements within a block, e.g., with a block length of five (𝑙 = 5), ℎ = 1, … , 5. The 

data tapering window is a single function w, with 𝑤: ℝ → [0,1], so that 𝑤𝑙(ℎ) = 𝑤 (
ℎ−0.5

𝑙
). For 
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the weighting function, Paparoditis and Politis (2001) suggest a trapezoidal function, 𝑤𝑐
𝑡𝑟𝑎𝑝

, 

which is defined as: 

𝑤𝑐
𝑡𝑟𝑎𝑝(𝑡) = {

𝑡 𝑐,⁄ if 𝑡 ∈ [0, 𝑐]

1, if 𝑡 ∈ [𝑐, 1 − 𝑐]
(1 − 𝑡) 𝑐,⁄ if 𝑡 ∈ [1 − 𝑐, 1]

          (6) 

where 𝑐 is some fixed constant in (0;
1

2
] and 𝑡 = 𝑤𝑙(ℎ). Given this interval, Paparoditis 

and Politis (2001) show that it is optimal to choose 𝑐 = 0.43. 

An example illustrates the computation steps. Assuming a block length of five (𝑙 = 5), 

the data tapering function 𝑤𝑙(ℎ) is applied on the following values: (
1−0.5

5
) = 0.1, (

2−0.5

5
) =

0.3, (
3−0.5

5
) = 0.5, (

4−0.5

5
) = 0.7 and (

5−0.5

5
) = 0.9. For 𝑡 = 0.1 and 𝑡 = 0.3, the resulting 

weights according to equation (6) are 0.1 0.43⁄ = 0.2326 and 0.3 0.43⁄ = 0.6977, respec-

tively. For 𝑡 = 0.5, the weight is 1.0. For 𝑡 = 0.7 and 𝑡 = 0.9, the weighting function yields 

(1 − 0.7) 0.43 = 0.6977⁄  and (1 − 0.9) 0.43 = 0.2326⁄ , respectively. 

Paparoditis and Politis (2001) note that the variance of the bootstrapped values decreases 

due to the shrinking caused by the weighting function in equation (6). To correct for this effect, 

they multiply the weights by the ‘inflation factor’ 𝑙1 2⁄ ‖𝑤𝑙‖2⁄ , with ‖𝑤𝑙‖2 = {∑ 𝑤𝑙
2(ℎ)𝑙

ℎ=1 }
1 2⁄

. 

In our example, ‖𝑤𝑙‖2 = {0.23262 + 0.69772 + 12 + 0.69772 + 0.23262}1 2⁄ = 1.4428 and 

𝑙1 2⁄ ‖𝑤𝑙‖2⁄ = 50.5 1.4428 = 1.5498⁄ . All weights are multiplied by this factor so that the five 

“inflation-adjusted” factors are 0.3604, 1.0813, 1.5498, 1.0813, and 0.3604. 

To ensure that the block endpoints shrink to zero, Paparoditis and Politis (2001) centralize 

the original sample datapoints by subtracting the mean value of the population data: 𝑌𝑡 = 𝑋𝑡 −

𝑋̅𝑁, where 𝑡 = 1, 2, . . . , 𝑁.23 The tapered block bootstrap is implemented in the following way: 

                                                           
23 As Paparoditis and Politis (2001) state: “The tapered block bootstrap shrinkage idea could also be implemented 

using the uncentered {𝑋𝑡} data, but in this case the block endpoints should be shrunk towards 𝑋̅𝑁, instead to zero, 

and the resulting procedure becomes less transparent” (p. 1110). 
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As in the moving block bootstrap of Künsch (1989), we select 𝑏 blocks from the centralized 

population data {𝑌𝑡}, each with block length 𝑙 (𝑙 × 𝑏 = 𝑁). For 𝑚 = 0, 1, … , 𝑏 − 1, let: 

𝑌𝑚𝑙+𝑗
∗ ≔ 𝑤𝑙(𝑗)

𝑙1 2⁄

‖𝑤𝑙‖2
𝑌𝑖𝑚+𝑗−1  with 𝑗 = 1, 2, … , 𝑙,        (7) 

where 𝑖𝑚 denotes the starting index of the mth picked data block. To obtain the original 

data, we add the mean 𝑋̅𝑁 to the centralized data: 𝑋𝑚𝑙+𝑗
∗ = 𝑌𝑚𝑙+𝑗

∗ + 𝑋̅𝑁. This procedure is re-

peated for all 1,000 simulation runs. 

Again, the simulation setup for the MSCI World Index is identical to that in our baseline 

analysis. Panel A in Exhibit 11 shows the simulation results using the full sample period from 

January 1970 to December 2023, and Panel B those using the truncated sample that ranges from 

January 1970 to February 2009, when the drawdowns reached their peak during the global fi-

nancial crisis. The tapered block bootstrap (TBB) is implemented with block lengths of 12, 24, 

and 36 months. To evaluate the TBB method, we again choose the appropriate benchmarks: the 

MB36 method for the full sample period (see Panel A in Exhibit 3) and the PR12 method for 

the truncated sample period (see Panel A in Exhibit 7). 

[Insert Exhibit 11 here] 

In Panel A, while the mean MDD of the TBB36 method (-53.01) is closer to the popula-

tion MDD (-53.65%) than that of the MB36 method (-51.50), the opposite is true for the median 

values (-52.29% for TBB36 and -53.56% for MB36). As a result, comparing TBB36 and MB36 

in terms of first-order stochastic dominance, the null hypothesis must be rejected in both direc-

tions, i.e., TBB36 does not dominate MB36, but MB36 also does not dominate TBB36. 

Based on the truncated sample in Panel B, all three tapered block bootstrap specifications 

(TBB12, TBB24, and TBB36) tend to underestimate the population MDD. The mean and me-

dian MDD values of the TBB models are never below -44%, which, in absolute terms, is clearly 

below the population MDD (-53.65%). Conversely, the mean (-54.31%) and median (-56.27%) 



29 

MDDs of the PR12 benchmark model are much closer to the population value. Most important, 

the null hypothesis of first-order stochastic dominance of PR12 against TBB 36 cannot be re-

jected (with a p-value of 1.00). 

Taken together, these results allow us to conclude that the tapered block bootstrap is in-

ferior compared to the stationary bootstrap in the truncated sample, in which the non-station-

arity problem seems to be highly pronounced. When modelling drawdown risk in investor port-

folios, stationary bootstrap simulations appear to be the preferred method for researchers and 

practitioners. 

5.3 Average drawdown 

So far, the analysis has focused solely on maximum drawdown, which is a single risk 

number resulting from an extreme event. To gain further insights into drawdown behaviour, we 

next investigate the average drawdown, denotes as ADD, and defined as 𝐴𝐷𝐷 ∶=
1

𝑁
∑ 𝐷𝑖

𝑁
𝑖=1 , 

where 𝐷𝑖 ∶=
𝑀𝑖−𝑆𝑖

𝑀𝑖
 and 𝑀𝑖 ∶= max

𝑡=0,…,𝑖
𝑆𝑡 (Korn et al., 2022; Chekhlov et al., 2005). The population 

ADD is -7.96% for the MSCI World Index and -38.18% for Bitcoin. The corresponding simu-

lation results are presented in Exhibit 12. 

For the MSCI World Index in Panel A, median values fit better than mean values; the 

latter overestimate the population ADD in all cases. The metric “% < real ADD” varies from 

48.30% to 54.40%, indicating that approximately 50% of all simulated ADD values are above 

and 50% are below the population ADD. In Panel B, Bitcoin exhibits a much larger ADD of -

38.18%. As previously mentioned, Bitcoin has a high concentration of large drawdowns within 

a fairly small data sample (see Panel B in Exhibit 2). The Efron bootstrap clearly underestimates 

the population ADD. The ADD resulting from the MB method is higher for all three block 

lengths; however, even in these cases, the population ADD is underestimated. Finally, the PR 

method with a block length of thirty-six months yields the best results. With this 
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parameterisation, the mean ADD is -36.20% and the corresponding median is -35.86%. These 

values are closest to the population ADD. 

[Insert Exhibit 12 here] 

6. Concluding remarks 

This study examines the effectiveness of various bootstrap methods for simulating the 

distribution of maximum drawdown (MDD), which is a path-dependent risk measure particu-

larly relevant in traditional and digital asset markets. Using monthly data from the MSCI World 

Index and Bitcoin, we conduct a comprehensive comparison of three bootstrap procedures that 

have been used in the asset management literature, including Efron’s (1979) independent and 

identically distributed (i.i.d.) standard bootstrap, the moving block bootstrap (Künsch, 1989). 

and the stationary bootstrap (Politis and Romano, 1994). In addition, we assess two less known 

bootstrap procedures for dependent data for MDD estimation: the block-block bootstrap (An-

drews, 2004) and the tapered block bootstrap (Paparoditis and Politis, 2001). 

Our results highlight several important findings. First, the standard i.i.d. bootstrap signif-

icantly underestimates the true MDD, particularly in equity market simulations, even when the 

return series exhibits no statistically significant autocorrelation. This finding calls into question 

the common justification for using Efron’s bootstrap in weakly autocorrelated financial data. 

We demonstrate that the absence of linear autocorrelation does not imply statistical independ-

ence, particularly for risk measures such as MDD that are sensitive to the temporal clustering 

of extreme negative returns. Second, the moving block bootstrap method works reasonably 

well, provided that the non-stationarity problem is not too severe. However, when the maximum 

drawdown occurs near the boundaries of the sample—which cannot be ruled out in financial 

time series—its performance deteriorates markedly. Our simulations confirm that this non-sta-

tionarity issue can lead to significant MDD underestimation. Third, the stationary bootstrap of 

Politis and Romano (1994) consistently delivers the most accurate and robust MDD estimates, 
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especially with longer expected block lengths. Unlike the moving block approach, it is designed 

to preserve stationarity and captures the dependence structure of return series more effectively. 

Stochastic dominance tests further confirm the superiority of the stationary bootstrap for esti-

mating not just central moments, but the entire distribution of drawdowns. Finally, extensions 

of the block bootstrap, including the block-block and tapered block methods, do not provide 

any significant improvements to the stationary bootstrap when it comes to MDD estimation. 

These findings remain consistent across different market environments and asset classes, in-

cluding both equity and cryptocurrency markets. 

We therefore recommend the stationary bootstrap method proposed by Politis and Ro-

mano (1994)—specifically with a longer average block length—as the preferred approach for 

simulating drawdown risk. This applies to academic researchers conducting empirical risk anal-

yses, as well as to investment practitioners involved in asset allocation, portfolio stress testing, 

or risk-based strategy design. Despite its popularity and simplicity, the Efron (1979) bootstrap 

may yield misleading results in applications where path-dependent risk metrics such as maxi-

mum drawdown are central. 
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Exhibit 1: Five largest declines in the MSCI World Index and in bitcoin 

Panel A: MSCI World Index 

Crisis/Crash Start date End date MDD MDD date # of periods 

Financial crisis 2007-10-31 2013-04-30 -53.65% 2009-02-27 65 

Dotcom bubble 2000-03-31 2006-01-31 -46.31% 2002-09-30 69 

Market decline 1973-1974 1973-03-30 1977-12-30 -40.12% 1974-09-30 56 

Ukraine crash 2021-12-31 2023-12-29 -25.13% 2022-09-30 23 

Market decline 1990 1989-12-29 1993-03-31 -24.01% 1990-09-28 38 

 

Panel B: Bitcoin 

Crisis/Crash Start date End date MDD MDD date # of periods 

First crash 2013-11-29 2017-02-28 -79.77% 2015-01-30 38 

Second crash 2017-12-29 2020-11-30 -76.20% 2019-01-31 34 

Third crash 2021-10-29 2023-12-29 -73.35% 2022-12-30 26 

Fourth crash 2011-08-31 2012-07-31 -60.13% 2011-11-30 10 

Fifth crash 2021-03-31 2021-10-29 -40.40% 2021-06-30 6 

Panel A shows the five largest drawdowns of the MSCI World Index between December 1969 and December 

2023, based on 649 monthly index values. ‘Start date’ marks the beginning of the drawdown and ‘End date’ marks 

the date at which the drawdown caught up. ‘MDD’ is the maximum drawdown during a crisis, and ‘MDD date’ is 

the date of occurrence. “# of periods” quantifies the number of underwater months (not counting the ‘Start date’ 

or ‘End date’ months). Panel B lists the five largest drawdowns for Bitcoin from August 2011 to December 2023 

(149 monthly prices). All measures are the same as described in the notes to Panel A. 
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Exhibit 2: Underwater charts of the MSCI World Index and Bitcoin 

Panel A: MSCI World Index 

 

Panel B: Bitcoin 

 

Panel A shows the underwater chart of the MSCI World Index from December 1999 to December 2023. Of the 

five largest drawdowns between December 1969 and December 2023, three occurred during this period: the dot-

com bubble burst, the global financial crisis, and the Ukraine crash. All three of these events are marked with a 

grey bar. Panel B shows the underwater chart of Bitcoin from August 2011 to December 2023. The five largest 

drawdowns are also marked with a grey bar. 
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Exhibit 3: Simulation of the maximum drawdown of the MSCI World Index and Bitcoin 

Panel A: MSCI World Index 

Real MDD: -53.65% 
 Mean Q(50) % < real MDD Q(5) Q(95) Shape MSE 

Efron -39.50% -38.30% 7.50% -56.28% -27.61% 9.88 0.0279 

MB 12M -48.74% -49.82% 31.00% -67.35% -30.42% 1.70 0.0152 

MB 24M -51.07% -52.61% 38.30% -69.15% -32.20% 1.38 0.0117 

MB 36M -51.50% -53.65% 42.20% -67.86% -33.47% 1.42 0.0102 

PR 12M -49.65% -51.08% 33.70% -66.96% -31.48% 1.67 0.0128 

PR 24M -50.42% -53.65% 36.00% -64.18% -32.18% 2.04 0.0095 

PR 36M -50.86% -53.65% 34.20% -64.50% -38.68% 1.38 0.0079 

 

Panel B: Bitcoin 

Real MDD: -79.77% 
 Mean Q(50) % < real MDD Q(5) Q(95) Shape MSE 

Efron -75.90% -76.11% 38.00% -92.34% -58.58% 1.69 0.0127 

MB 12M -81.39% -82.23% 57.80% -96.18% -63.85% 0.97 0.0100 

MB 24M -82.50% -82.18% 60.50% -93.66% -70.14% 0.69 0.0066 

MB 36M -80.96% -79.77% 45.90% -89.85% -75.77% 0.40 0.0024 

PR 12M -81.72% -80.75% 55.30% -94.37% -68.31% 0.79 0.0066 

PR 24M -81.42% -79.77% 47.20% -92.88% -73.35% 0.49 0.0041 

PR 36M -80.99% -79.77% 43.90% -92.13% -73.35% 0.52 0.0030 

Panel A shows the results of the bootstrap simulations of the maximum drawdown for the MSCI World Index. The 

population consists of monthly returns from January 1970 to December 2023. During this period, the MSCI World 

Index experienced a maximum drawdown (MDD) of -53.65%. The analysed bootstrap simulation algorithms are 

Efron’s (1979) bootstrap, the moving block bootstrap (MB), and the Politis and Romano (1994) (PR) bootstrap. 

The MB and PR bootstrap algorithms are implemented using block lengths of twelve, twenty-four and thirty-six 

months. Each bootstrap simulation comprises 1,000 runs. ‘Mean’ and ‘Q(50)’ provide the mean and median 

MDDs. The column ‘% < real MDD’ lists the percentage of all simulation runs where the simulated MDD is higher 

than the true population MDD (i.e., overestimation). ‘Q(5)’ and ‘Q(95)’ provide the 5th and 95th quantiles of the 

1,000 simulated MDD values. Both statistical measures are necessary to compute the ‘Shape’ measure, as defined 

in Section 3.2. The final column, ‘MSE’, contains the mean squared errors, as defined in Section 3.2. Panel B 

provides the bootstrap simulation results for Bitcoin. The population consists of monthly Bitcoin returns from 

September 2011 to December 2023. During this period, Bitcoin exhibits an MDD of -79.77%. The bootstrap sim-

ulation methods applied, their parameterisations and all evaluated statistical measures are exactly the same as for 

the MSCI World Index. 
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Exhibit 4: Distribution of maximum drawdowns for the MSCI World Index and Bitcoin 

Panel A: MSCI World Index 

Real MDD: -53.65% 
 Q(10) Q(20) Q(30) Q(40) Q(50) Q(60) Q(70) Q(80) Q(90) 

Efron -51.30% -45.83% -42.92% -40.73% -38.30% -36.23% -34.08% -31.75% -29.13% 

MB 36M -62.83% -57.88% -54.58% -53.65% -53.65% -51.65% -48.40% -44.25% -40.09% 

PR 36M -59.38% -54.33% -53.65% -53.65% -53.65% -51.49% -46.31% -45.25% -40.12% 

𝐻0 𝑀𝐷𝐷𝑀𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36 

p-value 0.12 1.00 0.00 

 

Panel B: Bitcoin 

Real MDD: -79.77% 
 Q(10) Q(20) Q(30) Q(40) Q(50) Q(60) Q(70) Q(80) Q(90) 

Efron -90.12% -86.02% -82.25% -79.12% -76.11% -73.26% -70.09% -66.02% -60.96% 

MB 36M -87.90% -85.18% -82.47% -80.19% -79.77% -79.77% -79.77% -76.20% -76.20% 

PR 36M -88.78% -85.35% -82.15% -79.77% -79.77% -79.77% -79.77% -76.20% -76.20% 

𝐻0 𝑀𝐷𝐷𝑀𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36 

p-value 0.00 0.18 0.16 

Panel A shows the distribution of maximum drawdowns based on the bootstrap simulations for the MSCI World 

Index. The population comprises monthly returns from January 1970 to December 2023. During this period, the 

MSCI World Index experienced a maximum drawdown (MDD) of -53.65%. The analysed bootstrap simulation 

algorithms are Efron’s (1979) bootstrap, the moving block bootstrap (MB), and the Politis and Romano (1994) 

(PR) bootstrap. The MB and PR bootstrap algorithms are implemented using block lengths of thirty-six months. 

These are the least biased of all three implemented block sizes (12, 24, and 36 monthly returns) (see equation (1) 

in section 3.2). Each bootstrap simulation comprises 1,000 runs. ‘Q(10)’ provides the 10% quantile of the 1,000 

simulated MDD values, ‘Q(20)’ provides the 20% quantile, and so on. The table also contains the results of sto-

chastic dominance tests of order one. We test three hypotheses: The first hypothesis is that the MDD distribution 

resulting from the MB36 method stochastically dominates the distribution resulting from the Efron approach. The 

second hypothesis is that the MDD distribution resulting from the PR36 method stochastically dominates the dis-

tribution resulting from the Efron approach. The third hypothesis is that the MDD distribution resulting from the 

PR36 method stochastically dominates the distribution resulting from the MB36 approach. The applied hypothesis 

test is described in Linton et al. (2005) and incorporates improvements by Kläver (2006) (see section 3.2 for 

details). The p-value provides the probability of rejecting the null hypothesis of stochastic dominance despite the 

null hypothesis being correct. Panel B shows the bootstrap simulation results for Bitcoin. The population consists 

of monthly returns from September 2011 to December 2023. During this period, Bitcoin exhibited a maximum 

drawdown (MDD) of -79.77%. The bootstrap simulation methods applied, their parameterisations and all evalu-

ated statistical measures are exactly the same as for the MSCI World Index. 
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Exhibit 5: Cumulative distributions of the maximum drawdown for Bitcoin 

Panel A: SD1 test 𝑀𝐷𝐷𝑀𝐵36 ≽𝑆1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 

 

 

Panel B: SD1 test 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 

 

Panel A shows the cumulative distribution of 1,000 simulated maximum drawdown (MDD) values for Bitcoin, 

resulting from: the moving block bootstrap approach with a block length of thirty-six months; and Efron’s (1979) 

bootstrap method. The x-axis shows the absolute values of MDDs, and the y-axis shows the corresponding cumu-

lative probabilities. The population underlying the simulations is based on monthly Bitcoin returns from September 

2011 to December 2023. Similarly, Panel B illustrates the cumulative distribution of the 1,000 simulated MDD 

values for Bitcoin resulting from: the Politis and Romano (1994) bootstrap approach, applied with a block length 

of thirty-six months; and Efron’s bootstrap method. 
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Exhibit 6: Thirty-six-month first-order rolling autocorrelations  

Panel A: MSCI World Index 

 

Panel B: Bitcoin 

 

Panel A shows the rolling first-order autocorrelations (AC1) of the MSCI World Index, calculated using a rolling 

window of thirty-six monthly returns. These autocorrelations cover the period from January 2000 to December 

2023. The first autocorrelation, for January 2000, is computed using the thirty-six monthly MSCI World Index 

returns ranging from January 1997 to January 2000. The second autocorrelation, for February 2000, is computed 

using the thirty-six monthly MSCI World Index returns ranging from February 1997 to February 2000. This pro-

cess continues for each subsequent autocorrelation. The figure also shows the 5% and 95% confidence bounds. 

Panel B illustrates the rolling first-order autocorrelations for Bitcoin, computed over a rolling window of thirty-

six monthly discrete returns. These autocorrelations cover the period from September 2014 to December 2023. 

The computation of the rolling first-order autocorrelation is identical to that used for the MSCI World Index. 
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Exhibit 7: Simulation of the maximum drawdown of the MSCI World Index (based on a 

truncated sample where the MDD occurs at the sample end) 

Panel A: Statistics 

Real MDD: -53.65% 
 Mean Q(50) % < real MDD Q(5) Q(95) Shape MSE 

Efron -39.22% -38.14% 7.30% -56.16% -25.67% 11.14 0.0300 

MB 12M -44.21% -43.90% 19.80% -64.54% -25.77% 2.56 0.0229 

MB 24M -43.70% -42.21% 19.50% -63.59% -25.65% 2.82 0.0218 

MB 36M -44.68% -44.58% 16.80% -62.62% -26.97% 2.97 0.0180 

PR 12M -54.90% -56.37% 57.50% -77.81% -32.42% 0.88 0.0195 

PR 24M -56.02% -59.52% 61.30% -77.27% -31.68% 0.93 0.0191 

PR 36M -55.92% -60.70% 61.50% -77.16% -32.40% 0.90 0.0184 

 

Panel B: Distributions 

Real MDD: -53.65% 
 Q(10) Q(20) Q(30) Q(40) Q(50) Q(60) Q(70) Q(80) Q(90) 

Efron -51.98% -47.44% -43.51% -40.78% -38.14% -35.82% -33.36% -30.78% -27.65% 

MB 36M -58.14% -52.34% -48.64% -46.31% -44.58% -41.06% -40.12% -38.80% -32.63% 

PR 12M -72.28% -66.23% -62.28% -59.99% -56.37% -52.47% -46.31% -40.73% -35.50% 

𝐻0 𝑀𝐷𝐷𝑀𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅12 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅12 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36 

p-value 0.87 1.00 1.00 

Panel A shows the results of the bootstrap simulations of the maximum drawdown for the MSCI World Index. The 

population comprises monthly returns from January 1970 to February 2009, when the drawdown reached its peak 

during the global financial crisis. During this period, the MSCI World Index exhibited a maximum drawdown 

(MDD) of -53.65%. The analysed bootstrap simulation algorithms are Efron’s (1979) bootstrap, the moving block 

bootstrap (MB), and the Politis and Romano (1994) (PR) bootstrap. The MB and PR bootstrap algorithms are 

implemented using block lengths of twelve, twenty-four and thirty-six months. Each bootstrap simulation com-

prises 1,000 runs. ‘Mean’ and ‘Q(50)’ provide the mean and median MDDs. The column ‘% < real MDD’ lists the 

percentage of simulation runs where the simulated MDD is higher than the true population MDD (i.e., overesti-

mation). ‘Q(5)’ and ‘Q(95)’ provide the 5th and 95th quantiles of the 1,000 simulated MDD values. Both statistical 

measures are necessary to compute the ‘Shape’ measure, as defined in section 3.2. The final column, ‘MSE’, 

contains the mean squared errors, as defined in section 3.2. Panel B shows the quantiles of the simulated MDD 

values resulting from the Efron bootstrap, the moving block bootstrap with a block length of thirty-six months 

(MB36), and the PR bootstrap with a block length of twelve months (PR12). MB36 and PR12 are the least biased 

of the three implemented block sizes (12, 24 and 36 monthly returns) (see equation (1) in Section 3.2). ‘Q(10)’ 

provides the 10% quantile of the 1,000 simulated MDD values, ‘Q(20)’ provides the 20% quantile, and so on. The 

table also contains the results of stochastic dominance tests of order one. We test three hypotheses: The first hy-

pothesis is that the MDD distribution resulting from the MB36 method stochastically dominates the distribution 

resulting from the Efron approach. The second hypothesis is that the MDD distribution resulting from the PR12 

method stochastically dominates the distribution resulting from the Efron approach. The third hypothesis is that 

the MDD distribution resulting from the PR12 method stochastically dominates the distribution resulting from the 

MB36 approach. The applied hypothesis test is described in Linton et al. (2005) and incorporates improvements 

by Kläver (2006) (see section 3.2 for details). The p-value provides the probability of rejecting the null hypothesis 

of stochastic dominance despite the null hypothesis being correct. 
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Exhibit 8: Simulation of the maximum drawdown of the Nasdaq 100 Index (based on a 

truncated sample where the MDD occurs at the sample end) 

Panel A: Statistics 

Real MDD: -81.07% 
 Mean Q(50) % < real MDD Q(5) Q(95) Shape MSE 

Efron -57.49% -55.84% 4.80% -80.35% -38.83% -58.85 0.0717 

MB 12M -62.88% -63.98% 12.40% -87.13% -35.19% 7.57 0.0568 

MB 24M -60.48% -65.37% 13.50% -90.00% -31.67% 5.53 0.0828 

MB 36M -54.64% -56.61% 5.30% -81.15% -27.64% 655.68 0.1076 

PR 12M -67.08% -69.32% 25.10% -92.09% -35.42% 4.14 0.0503 

PR 24M -69.42% -73.58% 36.90% -92.34% -34.57% 4.13 0.0482 

PR 36M -70.40% -78.08% 44.30% -93.81% -34.57% 3.65 0.0498 

 

Panel B: Distributions 

Real MDD: -81.07% 
 Q(10) Q(20) Q(30) Q(40) Q(50) Q(60) Q(70) Q(80) Q(90) 

Efron -75.44% -68.77% -63.69% -59.57% -55.84% -52.81% -49.67% -46.46% -42.18% 

MB 12M -82,64% -76,28% -71,56% -67,50% -63,98% -61,42% -55,15% -49,15% -39,94% 

PR 36M -90.49% -84.64% -84.42% -81.53% -78.08% -73.43% -64.23% -50.91% -35.42% 

𝐻0 𝑀𝐷𝐷𝑀𝐵12 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵12 

p-value 0.00 0.00 0.00 

 

Panel C: SD1 test 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵12 

 

Panel A shows the results of the bootstrap simulations of the maximum drawdown for the Nasdaq100 Index. The 

population comprises monthly returns from February 1983 to September 2002, when the drawdown reached its 

peak at the bursting of the dotcom bubble. During this period, the Nasdaq 100 Index exhibited a maximum draw-

down (MDD) of -81.07%. The analysed bootstrap simulation algorithms are Efron’s (1979) bootstrap, the moving 

block bootstrap (MB), and the Politis and Romano (1994) (PR) bootstrap. The MB and PR bootstrap algorithms 

are implemented using block lengths of twelve, twenty-four and thirty-six months. Each bootstrap simulation 
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comprises 1,000 runs. ‘Mean’ and ‘Q(50)’ provide the mean and median MDDs. The column ‘% < real MDD’ 

lists the percentage of simulation runs where the simulated MDD is higher than the true population MDD (i.e., 

overestimation). ‘Q(5)’ and ‘Q(95)’ provide the 5th and 95th quantiles of the 1,000 simulated MDD values. Both 

statistical measures are necessary to compute the ‘Shape’ measure, as defined in Section 3.2. The final column, 

‘MSE’, contains the mean squared errors, as defined in Section 3.2. Panel B shows the quantiles of the simulated 

MDD values resulting from the Efron bootstrap, the moving block bootstrap with a block length of twelve months 

(MB12), and the PR bootstrap with a block length of thirty-six months (PR36). MB12 and PR36 are the least 

biased of the three implemented block sizes (12, 24 and 36 monthly returns) (see equation (1) in section 3.2). 

‘Q(10)’ provides the 10% quantile of the 1,000 simulated MDD values, ‘Q(20)’ provides the 20% quantile, and so 

on. The table also contains the results of stochastic dominance tests of order one. We test three hypotheses: The 

first hypothesis is that the MDD distribution resulting from the MB12 method stochastically dominates the distri-

bution resulting from the Efron approach. The second hypothesis is that the MDD distribution resulting from the 

PR36 method stochastically dominates the distribution resulting from the Efron approach. The third hypothesis is 

that the MDD distribution resulting from the PR36 method stochastically dominates the distribution resulting from 

the MB12 approach. The applied hypothesis test is described in Linton et al. (2005) and incorporates improvements 

by Kläver (2006) (see section 3.2 for details). The p-value provides the probability of rejecting the null hypothesis 

of stochastic dominance despite the null hypothesis being correct. Panel C shows the cumulative distribution of 

1,000 simulated maximum drawdown (MDD) values for the Nasdaq 100 Index, resulting from: the Politis and 

Romano (1994) bootstrap approach, applied with a block length of thirty-six months; and the moving block boot-

strap method, applied with a block length of twelve months. The x-axis shows the absolute values of MDDs, and 

the y-axis shows the corresponding cumulative probabilities. The population underlying the simulations is based 

on monthly Nasdaq 100 Index returns from February 1983 to September 2002. 
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Exhibit 9: Simulation of the maximum drawdown of the Nasdaq 100 Index (based on a 

truncated sample where the MDD occurs at the sample start) 

Panel A: Statistics 

Real MDD: -81.07% 
 Mean Q(50) % < real MDD Q(5) Q(95) Shape MSE 

Efron -57.99% -57.12% 4.40% -80.13% -37.84% -45.84 0.0705 

MB 12M -67.71% -67.99% 21.30% -91.43% -45.04% 3.48 0.0399 

MB 24M -64.60% -67.89% 18.20% -90.57% -34.80% 4.87 0.0569 

MB 36M -60.83% -55.87% 18.10% -88.37% -32.97% 6.59 0.0742 

PR 12M -68.01% -69.63% 24.50% -91.33% -42.70% 3.74 0.0417 

PR 24M -69.66% -73.43% 34.30% -92.53% -44.07% 3.23 0.0404 

PR 36M -70.91% -78.48% 39.90% -92.30% -45.05% 3.21 0.0379 

 

Panel B: Distributions 

Real MDD: -81.07% 
 Q(10) Q(20) Q(30) Q(40) Q(50) Q(60) Q(70) Q(80) Q(90) 

Efron -76.31% -69.77% -65.11% -60.92% -57.12% -53.52% -50.04% -45.75% -41.55% 

MB 12M -87,04% -81,77% -76,62% -71,93% -67,99% -63,88% -60,62% -54,79% -46,93% 

PR 36M -88.45% -83.28% -81.07% -81.07% -78.48% -71.35% -63.66% -50.11% -50.11% 

𝐻0 𝑀𝐷𝐷𝑀𝐵12 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵12 

p-value 0.00 0.11 0.00 

 

Panel C: SD1 test 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵12 

 

Panel A shows the results of the bootstrap simulations of the maximum drawdown for the Nasdaq100 Index. The 

population comprises monthly returns from January 2000 to December 2023. The drawdown reached its peak at 

the beginning of the truncated sample, when the dotcom bubble burst. During this period, the Nasdaq 100 Index 

exhibited a maximum drawdown (MDD) of -81.07%. The analysed bootstrap simulation algorithms are Efron’s 

(1979) bootstrap, the moving block bootstrap (MB), and the Politis and Romano (1994) (PR) bootstrap. The MB 

and PR bootstrap algorithms are implemented using block lengths of twelve, twenty-four and thirty-six months. 
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Each bootstrap simulation comprises 1,000 runs. ‘Mean’ and ‘Q(50)’ provide the mean and median MDDs. The 

column ‘% < real MDD’ lists the percentage of simulation runs where the simulated MDD is higher than the true 

population MDD (i.e., overestimation). ‘Q(5)’ and ‘Q(95)’ provide the 5th and 95th quantiles of the 1,000 simulated 

MDD values. Both statistical measures are necessary to compute the ‘Shape’ measure, as defined in Section 3.2. 

The final column, ‘MSE’, contains the mean squared errors, as defined in Section 3.2. Panel B shows the quantiles 

of the simulated MDD values resulting from the Efron bootstrap, the moving block bootstrap with a block length 

of twelve months (MB12), and the PR bootstrap with a block length of thirty-six months (PR36). MB12 and PR36 

are the least biased of the three implemented block sizes (12, 24 and 36 monthly returns) (see equation (1) in 

section 3.2). ‘Q(10)’ provides the 10% quantile of the 1,000 simulated MDD values, ‘Q(20)’ provides the 20% 

quantile, and so on. The table also contains the results of stochastic dominance tests of order one. We test three 

hypotheses: The first hypothesis is that the MDD distribution resulting from the MB12 method stochastically 

dominates the distribution resulting from the Efron approach. The second hypothesis is that the MDD distribution 

resulting from the PR36 method stochastically dominates the distribution resulting from the Efron approach. The 

third hypothesis is that the MDD distribution resulting from the PR36 method stochastically dominates the distri-

bution resulting from the MB12 approach. The applied hypothesis test is described in Linton et al. (2005) and 

incorporates improvements by Kläver (2006) (see section 3.2 for details). The p-value provides the probability of 

rejecting the null hypothesis of stochastic dominance despite the null hypothesis being correct. Panel C shows the 

cumulative distribution of 1,000 simulated maximum drawdown (MDD) values for the Nasdaq 100 Index, result-

ing from: the Politis and Romano (1994) bootstrap approach, applied with a block length of thirty-six months; and 

the moving block bootstrap method, applied with a block length of twelve months. The x-axis shows the absolute 

values of MDDs, and the y-axis shows the corresponding cumulative probabilities. The population underlying the 

simulations is based on monthly Nasdaq 100 Index returns from January 2000 to December 2023. 
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Exhibit 10: Simulation results using the block-block bootstrap  

Panel A: MSCI World Index, 1970-01 to 2023-12 

Real MDD: -53.65% 

 Popula-

tion MDD 
Mean Q(50) 

% < real 

MDD 
Q(5) Q(95) Shape MSE 

BBB 12M -49.38% -45.97% -45.75% 24.10% -65.60% -26.89% 1.39 0.0199 

BBB 24M -51.88% -49.41% -50.68% 34.80% -67.65% -29.06% 1.33 0.0142 

BBB 36M -42.79% -49.98% -53.25% 36.40% -68.06% -29.51% 0.53 0.0129 

MB 36M -53.65% -51.50% -53.65% 42.20% -67.86% -33.47% 1.42 0.0102 

𝐻0 𝑀𝐷𝐷𝑀𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐵𝐵𝐵36 𝑀𝐷𝐷𝐵𝐵𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36 

p-value 0.22 0.00 

 

Panel B: MSCI World Index, 1970-01 to 2009-02 

Real MDD: -53.65% 

 Popula-

tion MDD 
Mean Q(50) 

% < real 

MDD 
Q(5) Q(95) Shape MSE 

BBB 12M -41.58% -39.26% -38.43% 9.30% -57.49% -24.64% 1.07 0.0317 

BBB 24M -45.25% -40.45% -39.70% 10.70% -59.82% -24.87% 1.40 0.0283 

BBB 36M -46.45% -41.49% -40.48% 11.50% -59.97% -24.01% 1.66 0.0252 

PR 12M -53.56% -54.31% -56.27% 56.60% -75.99% -30.73% 1.03 0.0198 

𝐻0 𝑀𝐷𝐷𝑃𝑅12 ≽𝑆𝐷1 𝑀𝐷𝐷𝐵𝐵𝐵36 𝑀𝐷𝐷𝐵𝐵𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑃𝑅12 

p-value 1.00 0.00 

Panel A shows the results of the block-block bootstrap simulations of the maximum drawdown for the MSCI 

World Index. The population comprises monthly returns from January 1970 to December 2023. During this full 

sample period, the MSCI World Index experienced a maximum drawdown (MDD) of -53.65%. The analysed 

bootstrap simulation algorithms are the block-block bootstrap (BBB) and the moving block bootstrap with a block 

size of thirty-six months (MB36). MB36 is the least biased of all the analysed bootstrap methods within this sim-

ulation setup (see Exhibit 3). The BBB method is implemented using block lengths of twelve, twenty-four and 

thirty-six months. Each bootstrap simulation comprises 1,000 runs. ‘Mean’ and ‘Q(50)’ provide the mean and 

median MDDs. The column ‘% < real MDD’ lists the percentage of simulation runs where the simulated MDD is 

higher than the true population MDD (i.e., overestimation). ‘Q(5)’ and ‘Q(95)’ provide the 5th and 95th quantiles 

of the 1,000 simulated MDD values. Both statistical measures are necessary to compute ‘Shape’ measure, as de-

fined in Section 3.2. The final column, ‘MSE’, contains the mean squared errors, as defined in Section 3.2. Panel 

A also contains the results of stochastic dominance tests of order one. We test two hypotheses: The first hypothesis 

is that the MDD distribution resulting from the MB36 method stochastically dominates the distribution resulting 

from block-block bootstrap with a block size of 36 months. The second hypothesis is the reverse. The applied 

hypothesis test is described in Linton et al. (2005) and incorporates improvements by Kläver (2006) (see section 

3.2 for details). The p-value provides the probability of rejecting the null hypothesis of stochastic dominance de-

spite the null hypothesis being correct. Panel B shows the results of the bootstrap simulations for the MSCI World 

Index using a truncated sample from January 1970 to February 2009, when the drawdowns reached the peak during 

the global financial crisis. The bootstrap simulation methods applied, their parameterisations, and all evaluated 

statistical measures are the same as those explained in Panel A. The benchmark bootstrap method is Politis and 

Romano with a block size of twelve months (PR12), the least biased of the implemented block sizes within this 

simulation setup (see Exhibit 7). 
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Exhibit 11: Simulation results using the tapered block bootstrap  

Panel A: MSCI World Index, 1970-01 to 2023-12 

Real MDD: -53.65% 

  Mean Q(50) % < real MDD Q(5) Q(95) Shape MSE 

TBB 12M -47.79% -47.73% 32.90% -69.12% -29.91% 1.53 0.0182 

TBB 24M -51.22% -51.65% 46.90% -71.58% -30.93% 1.27 0.0168 

TBB 36M -53.01% -52.29% 48.10% -71.55% -31.71% 1.23 0.0153 

MB 36M -51.50% -53.65% 42.20% -67.86% -33.47% 1.42 0.0102 

𝐻0 𝑀𝐷𝐷𝑀𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑇𝐵𝐵36 𝑀𝐷𝐷𝑇𝐵𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36 

p-value 0.00 0.00 

 

Panel B: MSCI World Index, 1970-01 to 2009-02 

Real MDD: -53.65% 

  Mean Q(50) % < real MDD Q(5) Q(95) Shape MSE 

TBB 12M -41.63% -39.73% 15.10% -62.19% -25.10% 3.34 0.0276 

TBB 24M -41.87% -41.18% 12.60% -61.22% -27.94% 3.40 0.0247 

TBB 36M -43.81% -43.40% 14.30% -63.13% -25.05% 3.02 0.0214 

PR 12M -54.31% -56.27% 56.60% -75.99% -30.73% 1.03 0.0198 

𝐻0 𝑀𝐷𝐷𝑃𝑅12 ≽𝑆𝐷1 𝑀𝐷𝐷𝑇𝐵𝐵36 𝑀𝐷𝐷𝑇𝐵𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑃𝑅12 

p-value 1.00 0.00 

Panel A shows the results of the tapered block bootstrap simulations of the maximum drawdown for the MSCI 

World Index. The population comprises monthly returns from January 1970 to December 2023. During this full 

sample period, the MSCI World Index experienced a maximum drawdown (MDD) of -53.65%. The analysed 

bootstrap simulation algorithms are the tapered block bootstrap (TBB) and the moving block bootstrap with a 

block size of thirty-six months (MB36). MB36 is the least biased of all the analysed bootstrap methods within this 

simulation setup (see Exhibit 3). The TBB method is implemented using block lengths of twelve, twenty-four and 

thirty-six months. Each bootstrap simulation comprises 1,000 runs. ‘Mean’ and ‘Q(50)’ provide the mean and 

median MDDs. The column ‘% < real MDD’ lists the percentage of simulation runs where the simulated MDD is 

higher than the true population MDD (i.e., overestimation). ‘Q(5)’ and ‘Q(95)’ provide the 5th and 95th quantiles 

of the 1,000 simulated MDD values. Both statistical measures are necessary to compute ‘Shape’ measure, as de-

fined in Section 3.2. The final column, ‘MSE’, contains the mean squared errors, as defined in Section 3.2. Panel 

A also contains the results of stochastic dominance tests of order one. We test two hypotheses: The first hypothesis 

is that the MDD distribution resulting from the MB36 method stochastically dominates the distribution resulting 

from tapered block bootstrap with a block size of 36 months. The second hypothesis is the reverse. The applied 

hypothesis test is described in Linton et al. (2005) and incorporates improvements by Kläver (2006) (see section 

3.2 for details). The p-value provides the probability of rejecting the null hypothesis of stochastic dominance de-

spite the null hypothesis being correct. Panel B shows the results of the bootstrap simulations for the MSCI World 

Index using a truncated sample from January 1970 to February 2009, when the drawdowns reached the peak during 

the global financial crisis. The bootstrap simulation methods applied, their parameterisations, and all evaluated 

statistical measures are the same as those explained in Panel A. The benchmark bootstrap method is Politis and 

Romano with a block size of twelve months (PR12), the least biased of the implemented block sizes within this 

simulation setup (see Exhibit 7). 
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Exhibit 12: Simulation of the average drawdown 

Panel A: MSCI World Index 

Real ADD: -7.96% 
 Mean Q(50) % < real ADD Q(5) Q(95) Shape MSE 

Efron -8.71% -8.02% 50.50% -14.39% -4.98% 0.46 0.0011 

MB 12M -9.26% -8.10% 51.80% -17.91% -4.15% 0.38 0.0021 

MB 24M -8.87% -7.99% 50.30% -16.68% -4.13% 0.44 0.0018 

MB 36M -8.62% -7.92% 49.70% -15.57% -3.92% 0.53 0.0015 

PR 12M -9.16% -8.38% 54.40% -16.72% -4.28% 0.42 0.0021 

PR 24M -8.48% -8.05% 51.50% -14.41% -4.22% 0.58 0.0011 

PR 36M -8.37% -7.83% 48.30% -14.21% -4.36% 0.58 0.0010 

𝐻0 𝑀𝐷𝐷𝑀𝐵36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵36 

p-value 0.00 0.00 0.17 

 

Panel B: Bitcoin 

Real ADD: -38.18% 
 Mean Q(50) % < real ADD Q(5) Q(95) Shape MSE 

Efron -25.28% -23.55% 11.00% -44.31% -13.15% 4.09 0.0260 

MB 12M -32.32% -31.01% 25.40% -56.27% -15.89% 1.23 0.0173 

MB 24M -35.87% -34.97% 38.10% -55.22% -18.90% 1.13 0.0125 

MB 36M -35.49% -35.28% 33.50% -47.05% -24.52% 1.54 0.0057 

PR 12M -34.22% -33.16% 31.80% -52.99% -19.37% 1.27 0.0125 

PR 24M -35.84% -35.13% 37.80% -51.14% -23.09% 1.16 0.0078 

PR 36M -36.20% -35.86% 37.20% -49.08% -23.93% 1.31 0.0061 

𝐻0 𝑀𝐷𝐷𝑀𝐵24 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝐸𝑓𝑟𝑜𝑛 𝑀𝐷𝐷𝑃𝑅36 ≽𝑆𝐷1 𝑀𝐷𝐷𝑀𝐵24 

p-value 0.36 0.28 0.00 

Panel A shows the results of the bootstrap simulations of the average drawdown for the MSCI World Index. The 

population consists of monthly returns from January 1970 to December 2023. During this period, the MSCI World 

Index exhibits an average drawdown (ADD) of -7.96%. The analysed bootstrap simulation algorithms are Efron’s 

(1979) bootstrap, the moving block bootstrap (MB), and the Politis and Romano (1994) (PR) bootstrap. The MB 

and PR bootstrap algorithms were implemented using block lengths of twelve, twenty-four and thirty-six months. 

Each simulation comprises 1,000 runs. ‘Mean’ and ‘Q(50)’ provide the mean and median ADD. The column ‘% 

< real ADD’ lists the percentage of all simulation runs where the simulated ADD is higher than the true population 

ADD (i.e., overestimation). ‘Q(5)’ and ‘Q(95)’ provide the 5th and 95th quantiles of the 1,000 simulated ADD 

values. Both statistical measures are necessary to compute ‘Shape’ measure, as defined in Section 3.2. The final 

column, ‘MSE’, contains the mean squared errors, as defined in Section 3.2. The table also contains the results of 

stochastic dominance tests of order one. MB36 and PR36 are the least biased versions of all three implemented 

block sizes (12, 24 and 36 monthly returns) (see equation (1) in Section 3.2). We test three hypotheses: The first 

hypothesis is that the MDD distribution resulting from the MB36 method stochastically dominates the distribution 

resulting from the Efron approach. The second hypothesis is that the MDD distribution resulting from the PR36 

method stochastically dominates the distribution resulting from the Efron approach. The third hypothesis is that 

the MDD distribution resulting from the PR36 method stochastically dominates the distribution resulting from the 

MB36 approach. The applied hypothesis test is described in Linton et al. (2005) and incorporates improvements 

provided by Kläver (2006). The p-value provides the probability of rejecting the null hypothesis of stochastic 

dominance despite the null hypothesis being correct. Panel B shows the results of the bootstrap simulations for 

Bitcoin. The population consists of monthly returns from September 2011 to December 2023. During this period, 

Bitcoin exhibited an average drawdown (ADD) of -38.18%. The bootstrap simulation methods applied, their pa-

rameterisations, and all evaluated statistical measures are the same as those explained in Panel A. 


