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Abstract 

This study examines the predictive performance of multi-output machine learning models in 

estimating industry betas. Multi-output predictions improve forecast accuracy by identifying 

cross-sectional interdependencies between industries that single-output approaches system-

atically overlook. Two portfolio applications demonstrate the economic value of these im-

provements: constructing market-neutral anomaly strategies and optimizing minimum vari-

ance portfolios. Our results show that multi-output estimates enable more detailed modelling 

of systematic risk, leading to more effective hedging strategies, better risk management and 

greater alignment with investor preferences. 
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1 Introduction 

Global equity markets are shaped by dynamic and interconnected industries whose risk pro-

files transform in response to macroeconomic conditions, technological disruption, and global sup-

ply chain shifts. To navigate this ever-evolving environment, financial decision makers must in-

creasingly assess systematic risk not merely at the market or asset level, but with greater granular-

ity, capturing sector- and industry-specific exposures. However, industry practice is predominantly 

anchored around the Capital Asset Pricing Model (CAPM), which continues to dominate cost of 

capital estimation and portfolio decision-making (Graham and Harvey, 2001; Graham, 2022). Cen-

tral to this model is the market beta, a measure of a stock’s sensitivity to broad market movements. 

Nevertheless, for many practical applications such as sector allocation, performance attribution, 

and risk budgeting, investors and analysts often require betas at a more disaggregated level, nota-

bly industry-level betas (Huang, O’Hara, and Zhong, 2021; Barardehi, Da, and Warachka, 2024; 

Biggerstaff, Goldie, and Kassa, 2025). These estimates allow decision-makers to assess sector-

specific exposures, actively manage systematic risk in concentrated holdings, and align portfolios 

with macroeconomic views. 

Despite its pertinence, the estimation of industry betas has received comparatively little at-

tention, thus motivating the necessity for reliable industry beta estimates. Existing approaches re-

main limited in three essential ways: First, they rely on traditional benchmark estimators and are 

unable to capture the nonlinearities and complex interaction effects embedded in high-dimensional 

financial data. Recent work by Drobetz et al. (2024) demonstrates that market beta estimates can 

be improved by applying machine learning (ML) techniques capable of addressing such non-line-

arities and interaction effects. Second, the classification systems employed are rigid and fixed over 
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time, with each stock being assigned to a single industry. As a result, they either omit conglomer-

ates that operate in multiple industries and only include firms concentrated in a single industry, 

which introduces a systematic upward bias into estimates, or fail to properly capture the true risk 

profile of multi-segment firms (Kaplan and Petersen, 1998). Third, even if considering betas to-

wards multiple industries, each of them is estimated in isolation, thus overlooking cross-industry 

dependencies that may arise from shared economic exposures. 

Our paper addresses these shortcomings. In particular, we propose a novel multi-output ML 

model to simultaneously forecast industry betas, recognizing that industry exposures are not inde-

pendent. The model’s capacity to discern multiple targets through shared hidden representations 

enables it to capture spillovers and correlated industry movements that are systematically over-

looked by single-output models. In contrast to established prediction models, our approach accom-

modates nonlinear dynamics, captures time-varying cross-sectional interdependencies across in-

dustries, and adapts to the evolving correlation structure between industries, thereby offering a 

more flexible and realistic representation of systematic risk at the industry level. Multi-output ML 

is common in many disciplines (see Xu et al., 2019 for a broader overview), with well-established 

applications in computer vision (He et al., 2017), bioinformatics and genomics (Zhou and Troyan-

skaya, 2015), and natural language processing (Collobert et al., 2011). However, its application 

has received limited attention in the empirical asset pricing literature. In a related context, Richman 

and Scognamiglio (2024) demonstrate the effectiveness of deep learning models in simultaneously 

forecasting multiple yield curves, highlighting their ability to capture complex dependencies and 

improve forecasting accuracy. 

The objective of this paper is to evaluate the predictive and economic performance of a multi-

output framework for industry beta estimation, benchmarked against models that estimate each 
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industry beta in isolation. Our empirical framework considers a large panel of U.S. stocks, using a 

comprehensive set of eighty predictors including firm-level characteristics, macroeconomic pre-

dictors, dummy variables for industry membership, and sample estimates of industry betas. We 

rely on SIC-based industry classifications as defined by Fama and French (1997). Based on exist-

ing literature (Cosemans et al., 2016; Drobetz et al., 2024), this predictor set is designed to capture 

the heterogenous industry dynamics reflected in industry betas. 

To the best of our knowledge, we are the first to apply ML models in the context of industry 

beta estimation. We benchmark their predictive performance with a set of established models from 

the family of rolling-window estimators. We find substantial improvement in forecast accuracy, 

as measured by the mean squared error (MSE), with ML models reducing forecast errors by half. 

This highlights their superior ability to capture nonlinearities and complex interactions within the 

set of predictor variables. By comparing the multi-output ML model, which estimates all industry 

sensitivities simultaneously (labelled “sim”), with the single-output ML model, which estimates 

all industry sensitivities separately (labelled “sep”), we identify improvements in forecast accuracy 

of up to 4.8% (value-weighted) and 6.3% (equally-weighted) across industries and time by con-

sidering cross-industry correlations or patterns. Using cross-sectional sorts based on industry beta 

estimates, we document that the predictive superiority of these estimates is not limited to extreme 

beta forecasts, but remains robust across the entire beta spectrum — from high- to low-beta stocks. 

Although we find heterogeneity in forecast accuracy by industry, the sim model outperforms or at 

least matches the performance of the sep model in every industry. Furthermore, the multi-output 

approach appears to be particularly advantageous for some industries such as consumer non-dura-

bles (with 9.7% improvement in the value-weighted forecast error), manufacturing (9.4%), tele-

communications (8.3%), and consumer durables (5.3%). 
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Evaluating predictive performance over time, we find that the multi-output approach main-

tains a lower forecast error trajectory compared to its single-output counterpart throughout most 

of the sample, with pronounced outperformance during and following the dot-com bubble. In this 

time period, we observe a structural shift in the cross-industry correlation regime. The multi-output 

model architecture appears to capture and translate this shift into more precise beta forecasts. How-

ever, these improvements are not confined to isolated episodes: the sim model outperforms the sep 

model across various market regimes and is more often included in the “Model Confidence Set” 

(MCS), which contains the “best” model(s) with a given level of confidence (Hansen, Lunde and 

Nason, 2011). The inclusion rates reach 70.5% in telephone and television transmission and even 

72.7% in manufacturing. These results highlight the effectiveness and flexibility of multi-output 

learning in modelling complex and time-varying risk structures, especially when shared variation 

across industries can be systematically exploited. 

In addition to the statistical comparison, we evaluate the economic value of our industry beta 

forecasts through two canonical asset pricing applications: market-neutral anomaly portfolio con-

struction and minimum variance portfolio (MVP) optimization. These settings reflect practical risk 

management concerns, where mitigating both market-wide and sector-specific exposures is criti-

cal. First, we extend the traditional market-neutral anomaly strategy to control for multiple sources 

of systematic risk. We find that multi-output forecasts deliver superior performance relative to 

single-output models in neutralizing unintended industry exposures, while effectively eliminating 

broad sector tilts. Second, we evaluate how increasingly granular representations of systematic 

risk affect MVP construction. By comparing optimization schemes that vary in how they incorpo-

rate systematic risk, we find that more granular representation of systematic risk enhances portfolio 

construction by yielding more stable and efficient minimum variance portfolios. 
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Our contribution to the literature is three-fold. First, we introduce a novel multi-output ML 

framework for estimating industry betas. This model captures nonlinear predictor interactions and 

structural co-movements across industries, information which has been neglected in existing ap-

proaches. Second, we examine when and how this approach adds value in terms of out-of-sample 

forecasting performance and portfolio implementation. Third, we address the modelling challenges 

that arise when applying a multi-output ML framework to asset pricing. This approach can also be 

applied to other prediction tasks and is valuable for both academic researchers and practitioners. 

The remainder of the paper proceeds as follows: Section 2 reviews the related literature and 

highlights the research gap in modeling industry betas. Section 3 describes our data, and Section 

4 outlines the empirical framework. Section 5 presents our statistical results, while Section 6 ex-

plores economic applications. Section 7 concludes. 

2 Literature review 

Ever since the CAPM of Sharpe (1964), Lintner (1965), and Mossin (1966) formalized mar-

ket beta as the measure of systematic risk, the concept of beta has shaped both theoretical models 

and practical decision-making. It remains integral to estimating the cost of capital, evaluating port-

folio risk, and designing factor-based investment strategies. The empirical estimation of precise 

and robust betas has received considerable attention in academic research. A variety of models 

have been proposed to address the challenges of measurement error, time variation, and cross-

sectional heterogeneity, ranging from classic linear regressions to Bayesian shrinkage techniques 

and, more recently, machine learning algorithms. 

The CAPM is a static, single-period model, implying that a stock’s sensitivity to market risk 

remains constant over time. However, a large body of literature supports the notion of time-varying 

betas (Bollerslev, Engle, and Woolridge, 1988; Jagannathan and Wang, 1996; Ferson and Harvey, 
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1999). To address the time-varying nature, traditional beta estimation methods typically rely on 

rolling-window ordinary least squares (OLS) regressions (Black, Jensen, and Scholes, 1972; Fama 

and MacBeth, 1973). While robust to model misspecification, these traditional approaches face a 

bias–variance trade-off depending on the chosen window length and sampling frequency, and they 

are often highly sensitive to outliers. Several modifications have been proposed to address these 

issues. Hollstein, Prokopczuk, and Wese Simen (2019) advocate for weighted least squares using 

exponential weights, and Welch (2022) demonstrates that winsorizing returns can reduce forecast 

errors. A parallel stream of research improves beta estimates by incorporating cross-sectional in-

formation. Vasicek (1973) and Karolyi (1992) introduce shrinkage methods that pull noisy rolling 

betas toward priors, but these common priors may still fail to capture firm-specific nuances. Ad-

dressing this, Cosemans et al. (2016) suggest firm-level priors based on firm fundamentals. Sub-

sequent work (Kim, Korajczyk, and Neuhierl, 2020; Kelly, Moskowitz, and Pruitt, 2021) confirms 

that characteristics like size, leverage, or turnover contain predictive information about future be-

tas. Moreover, Becker et al. (2021) highlight the long-memory properties of beta time series, sug-

gesting that persistence-based structures improve forecast stability. 

Despite the advances of shrinkage and time-series estimators, recent literature increasingly 

highlights the benefits of machine learning for beta estimation. Drobetz et al. (2024) demonstrate 

that ML models, particularly tree-based models and neural networks, exhibit consistent superiority 

over traditional benchmark estimators from both statistical and economic perspectives. Their ad-

vantage stems largely from the ability to capture nonlinearities and complex interactions across a 

broad set of predictors, allowing them to approximate the unobservable true beta function more 

effectively. This functional flexibility leads to more stable and accurate forecasts, especially in 

periods of economic stress. 
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While market beta estimation has received substantial attention, the estimation of industry 

betas introduces distinct conceptual and empirical challenges that are equally relevant for system-

atic risk assessment. Industries serve as a natural aggregation level because firms within the same 

industry operate under similar economic and regulatory conditions, share common exposures to 

macroeconomic factors, and exhibit tightly correlated return dynamics (Moskowitz and Grinblatt, 

1999). This makes industry betas particularly relevant for applications in equity valuation, capital 

budgeting, and portfolio risk management (Huang, O’Hara, and Zhong, 2021; Barardehi, Da, and 

Warachka, 2024; Biggerstaff, Goldie, and Kassa, 2025). 

For U.S. stocks, there is a diverse set of industry classifications, such as the Global Industry 

Classification Standard (GICS), the North American Industry Classification System (NAICS), or 

the Standard Industrial Classification (SIC). Influential work by Fama and French (1997) estab-

lishes a SIC-based industry classification to form 48 industry portfolios1 and estimate industry-

specific exposures using both the CAPM and the three-factor model of Fama and French (1993). 

While their approach provides valuable insights into cross-sectional variation in the cost of equity 

for industries, the findings indicate imprecision in these estimates. They argue that variations in 

industry characteristics, which may change over time, lead to heterogeneous responses of industry 

betas to market-wide shocks. Baele and Londono (2013) present a more structured and rigorous 

treatment and focus on modeling the dynamics of industry betas using DCC–MIDAS, a model 

combining dynamic conditional correlation (DCC) with mixed data sampling (MIDAS), as well 

as kernel regression techniques. Their findings reveal both substantial persistence and time-varia-

tion in industry betas. Furthermore, the results indicate strong heterogeneity in how different sec-

tors respond to business cycles. Unlike traditional rolling-window methods, their approach allows 

 
1 Alterations on this SIC-based industry classification are available on Kenneth French’s website. 
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for flexible, data-driven weighting of historical returns and accommodates both high- and low-

frequency components of beta dynamics. 

A fundamental constraint of conventional industry beta estimation methodologies is the im-

plicit assumption that each firm is exposed to merely a single industry. While this assumption is 

simple and intuitive, it may fail to capture the actual risk profile of diversified or multi-segment 

firms. Conglomerates, in particular, are either excluded or poorly represented in such frameworks. 

Recognizing the limitations of assigning firms to a single industry, researchers proposed segment-

based models to capture the multidimensional nature of conglomerates’ risk exposures. Fuller and 

Kerr (1981) and Kaplan and Peterson (1998) introduce the “full-information” industry beta ap-

proach, which utilizes segment-level data from multi-industry firms to infer the underlying indus-

try betas. In this framework, a conglomerate’s observed beta is interpreted as a weighted average 

of the unobservable true betas of its individual business segments, offering a more granular de-

composition of systematic risk. Recent developments in commercial risk models acknowledge the 

limitations of traditional industry beta estimation and incorporate fractional industry memberships, 

allowing firms, especially conglomerates, to be partially allocated across multiple industries based 

on revenue or operating segment disclosures (Menchero and Lazanas, 2024). 

Notwithstanding these advances, extant methodologies for the estimation of industry betas 

continue to be deficient in three principal aspects. First, existing approaches rely on historical es-

timators and are unable to capture the nonlinearities and complex interaction effects embedded in 

high-dimensional financial data. Second, models often only consider firms with operations con-

centrated in a single industry (pure-play industry analysis) due to their inability to handle con-

glomerates that operate in multiple industries. Kaplan and Petersen (1998) argue that this intro-

duces a systematic upward bias into industry beta estimates, as conglomerates – typically firms 
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with higher market capitalization and lower betas – are excluded. Although the issue of diversified 

firm exposures is acknowledged in commercial applications, it remains underexplored in empirical 

asset pricing research, where firms are still commonly assigned to a single industry based on their 

primary line of business. Third, existing methods estimate industry betas in isolation, overlooking 

the cross-industry dependencies that may arise from shared economic exposures. This concern is 

echoed by Božović (2023), who demonstrates that industry portfolios face persistent pricing chal-

lenges due to time-varying and correlated exposures to systematic risk, and proposes a dynamic 

correlation factor with the market to better capture their joint behavior. 

To fill this gap, we propose a multi-output approach that jointly estimates all industry betas. 

Our approach is designed to capture cross-sectional interdependencies across industries while ac-

commodating the nonlinear dynamics and complex predictor interactions embedded in the predic-

tor set. This is achieved by modelling industry betas simultaneously. For example, a positive de-

mand shock in the semiconductor industry may simultaneously influence expected cash flows and 

risk exposures in downstream sectors such as consumer electronics or automotive, an effect that 

would be missed in models that estimate betas independently by industry. Our framework poten-

tially offers a more flexible and realistic representation of systematic risk at the industry level. 

3 Data 

We obtain market data from the Center for Research in Security Prices (CRSP) and firm-

level fundamentals from Compustat. The data is aggregated on a monthly frequency and denomi-

nated in U.S. dollars when currency-related. To avoid survivorship bias, we assume that firm-level 

fundamentals are available four months after fiscal year end, while market data becomes available 

immediately. Our sample includes all common stocks listed on the New York Stock Exchange 

(NYSE), the NYSE American (formerly known as American Stock Exchange (AMEX)), and the 
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National Association of Securities Dealers Automated Quotations (NASDAQ), with share codes 

10 or 11. As a proxy for the risk-free rate, we use the three-month U.S. T-bill rate scaled to daily 

or monthly horizon. The value-weighted portfolio of all stocks is used as a proxy for the market 

portfolio, while value-weighted portfolios formed within each industry serve as proxies for the 

respective industry portfolios. 

For our analysis, we rely on a comprehensive set of eighty predictors that expands upon the 

framework proposed by Cosemans et al. (2016) and Drobetz et al. (2024) to better capture the 

heterogenous industry dynamics reflected in industry betas. The predictor set includes four cate-

gories: (1) firm-level characteristics, (2) macroeconomic predictors, (3) industry membership, and 

(4) sample estimates of industry betas. The inclusion of a large, heterogeneous set of firm, macro, 

industry, and beta-based predictors allows our multi-output neural network architecture to flexibly 

model both idiosyncratic and cross-industry patterns in beta dynamics. Table A1 in the Appendix 

contains details of these predictors. 

Firm-level characteristics can be further categorized into a broad set of twenty-one funda-

mental covariates based on accounting information as well as nine technical indicators. We assign 

industry dummies as predictors following the SIC-industry classification obtained from Kenneth 

French’s Data Library clustering our sample into ten mutually exclusive industries: Consumer 

nondurables (nodur), consumer durables (durbl), manufacturing (manuf), energy (enrgy), business 

equipment (hitec), telephone and television transmission (telcm), wholesale and retail (shops), 

healthcare (hlth), utilities (util) and others (other). As outlined in Drobetz et al. (2024), we further 

include predictors based on sample estimates of industry betas over time to capture the time-series 

dynamics in firms’ exposures to different industries. In particular, we construct three additional 

beta estimates for each of the ten industries. These estimates are derived using rolling-window 
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OLS regressions and reflect changes – rather than levels – in estimated betas. Focusing on the first 

differences of the estimated betas, rather than their levels, mitigates issues arising from differences 

in the unconditional distribution of betas across industries. For example, sectors such as util natu-

rally have lower beta levels compared to sectors such as hitec, which tend to show higher beta 

levels, due to structural differences in risk exposure. These persistent differences in industry beta 

levels can lead to biased optimization and deteriorate predictive performance in sectors with wider 

or more skewed distributions of industry beta levels. The transformation ensures greater compara-

bility and stationarity in the predictor set. It also allows for a heterogenous autoregressive forecast 

structure, in line with the long-memory properties documented by Becker et al. (2021). We com-

pute the change in industry betas over three distinct horizons: three months and one year using 

daily returns (ols_3m_d and ols_1y_d, respectively), and five years using monthly returns 

(ols_5y_m). This results in a set of variables designed to capture short-, medium-, and long-term 

fluctuations in industry-specific exposures. 

We adopt the same screening criteria as described by Cosemans et al. (2016). A firm is in-

cluded in month t only if it has a nonnegative book value of equity (as defined in Fama and French 

(1992)), positive net sales, and a positive monthly dollar trading volume. Moreover, the firm must 

have return data available for the current and previous thirty-six months. Lastly, we require com-

plete information on the predictor set. In case of missing values, we omit the entire firm-month 

observation to match the requirements for the econometric models. The resulting sample covers 

the period from April 1970 to December 2023, with 1,707 firm observations per month. 

Following Cosemans et al. (2016), outliers in all firm-level characteristics are winsorized at 

the 0.5th and 99.5th percentiles of their monthly cross-sectional distributions. Finally, we rank all 
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characteristics each month across firms and linearly map the ranks to the (−1, +1) interval, as 

suggested by Kelly et al. (2019) and Freyberger, Neuhierl, and Weber (2020).  

4 Methodology 

Our empirical analysis examines the effectiveness of multi-output machine learning ap-

proaches in estimating industry betas. We investigate whether forecasting multiple industry betas 

simultaneously, rather than estimating each beta in isolation, yields more precise and robust out-

of-sample predictions. The underlying rationale is that industry betas are inherently related through 

economic linkages and shared exposure to common risk factors. Multi-output models can exploit 

these interdependencies by learning the joint structure of the targets, capturing spillover effects 

and co-movements that single-output models systematically ignore. This section introduces our 

empirical framework as well as the machine learning methods and benchmark estimators. 

4.1 Forecasting framework 

Our empirical setup follows the methodology of Cosemans et al. (2016) and Hollstein and 

Prokopczuk (2016). We implement a rolling out-of-sample forecasting framework to model firm-

specific industry betas. In particular, for every industry, we generate monthly forecasts of industry 

betas at the stock level using a rolling window approach. In each iteration, data available up to the 

end of month 𝑡 is used to predict firm 𝑖’s beta for each industry 𝑗 over a forecast horizon spanning 

months 𝑡 + 1 to 𝑡 + 𝑘: 𝛽𝑖𝑗,𝑡+𝑘|𝑡
𝐹 . We fix the forecast horizon at 𝑘 = 12, reflecting a one-year fore-

cast horizon. The window is then rolled forward by one month, i.e., data up to the end of 𝑡 + 1 are 

used to generate forecasts for 𝑡 + 1 + 1 to 𝑡 + 1 + 𝑘. Repeating this procedure yields a panel of 

overlapping out-of-sample beta forecasts for each firm–industry pair, which are then evaluated 

against realized industry betas. 
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Realized industry betas are computed using daily return data over the respective one-year 

horizon as 𝛽𝑖𝑗,𝑡+𝑘
𝑅 =

𝐶𝑜𝑣𝑖𝑗,𝑡+𝑘
𝑅

𝑉𝑎𝑟𝑗,𝑡+𝑘
𝑅 , where 𝐶𝑜𝑣𝑖𝑗,𝑡+𝑘

𝑅  denotes the realized covariance between stock 𝑖 and 

industry 𝑗, and 𝑉𝑎𝑟𝑗,𝑡+𝑘
𝑅  is the realized variance of the return on the industry portfolio. Both mo-

ments are computed using continuously compounded daily returns. This approach is in line with 

Andersen et al. (2006), who demonstrate that realized beta measures based on high-frequency re-

turns provide consistent estimates of the true integrated beta. For each industry 𝑗, we evaluate 

model performance using the value-weighted MSE at the end of each month 𝑡, defined as: 

 𝑀𝑆𝐸𝑡+𝑘|𝑡
(𝑗)

= ∑ 𝑤𝑖,𝑡(𝛽𝑖𝑗,𝑡+𝑘
𝑅 − 𝛽𝑖𝑗,𝑡+𝑘|𝑡

𝐹 )2𝑁𝑡
𝑖=1 , with 𝑘 = 12, (1) 

where 𝑁𝑡 is the number of stocks at the end of month 𝑡, 𝑤𝑖,𝑡 is the market capitalization-based 

weight of stock 𝑖, and superscript (𝑗) indicates the industry-specific MSE. Although future realized 

betas are estimates themselves, the literature supports their use as evaluation targets (Hansen and 

Lunde, 2006). 

To obtain industry beta predictions, we use a machine learning framework that directly tar-

gets the one-year-ahead forecast of realized industry betas. In line with Gu, Kelly, and Xiu (2020a), 

we frame the problem as a supervised learning task, where realized betas serve as the dependent 

variable and a comprehensive set of firm characteristics, historical beta estimates, industry dum-

mies, and macroeconomic variables are used as predictors. Our approach is explicitly designed to 

model cross-sectional variations in expected industry betas flexibly. This allows for the inclusion 

of a large number of potentially interacting and nonlinear predictors while maintaining the fore-

cast-oriented objective throughout model training (Drobetz et al., 2024). 

Our model is an adaptation of the additive prediction error model introduced in Gu, Kelly, 

and Xiu (2020a), applied to the context of industry-specific beta estimation: 
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 𝛽𝑖𝑗,𝑡+𝑘
𝑅  =  𝐸𝑡(𝛽𝑖𝑗,𝑡+𝑘

𝑅 )  +  𝜀𝑖𝑗,𝑡+𝑘, (2) 

where 𝛽𝑖𝑗,𝑡+𝑘
𝑅  is the realized beta of stock 𝑖 with respect to industry 𝑗 over the one-year fore-

cast horizon starting at month 𝑡 + 1. The error term 𝜀𝑖𝑗,𝑡+𝑘 captures unpredictable components. 

The expected industry beta, 𝐸𝑡(𝛽𝑖𝑗,𝑡+𝑘
𝑅 ), is modeled as a function of the predictor vector 𝑧𝑖,𝑡, which 

represents the P-dimensional set of predictors: 

 𝐸𝑡(𝛽𝑖𝑗,𝑡+𝑘
𝑅 ) = 𝑔∗(𝑧𝑖,𝑡). (3) 

The unknown function 𝑔∗(∙) represents the true but unobserved mapping from predictors to 

future industry betas. In our analysis, we rely on neural networks to approximate 𝑔∗(∙). Neural 

networks are trained to minimize the out-of-sample mean squared error (MSE) and offer a highly 

flexible, nonlinear, and parametric structure capable of capturing complex interactions and non-

stationarities in the data. The network approximation, 𝑔(𝑧𝑖,𝑡, 𝜃), depends on a high-dimensional 

parameter vector 𝜃, which is estimated using the stochastic gradient descent approach and regu-

larized through multiple techniques to prevent overfitting. 

4.2 Machine learning models and network architecture 

Our core modeling approach focuses on traditional feed-forward neural networks, which of-

fer flexibility to capture complex relationships between inputs and future betas. Importantly, the 

prediction task can be structured in two distinct ways: (1) as a set of separate models, each pre-

dicting a single industry beta (single-output, “sep”), or (2) as a unified model that simultaneously 

predicts all industry betas (multi-output, “sim”). Figure A1 in the Appendix provides a visualiza-

tion of these network architectures. We discuss the respective merits and design choices for these 

two architectures in this section. 
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Single-output networks are trained to predict just one target variable at a time, allowing the 

model to be highly specialized and optimized for that specific task. This setup can yield precise 

predictions for individual outputs. However, because each model is trained independently, it is not 

possible to exploit relationships between disparate targets. For instance, a model forecasting a 

firm’s exposure to the enrgy sector will not incorporate potentially useful information from its 

exposure to the manuf sector, even though these exposures may co-move, as both industries can 

reflect fundamental input costs and production dependencies in the firm’s operations. As a result, 

all knowledge about correlations or shared structure between outputs is ignored. 

The appeal of multi-output networks, in contrast, is their ability to learn several targets to-

gether with a shared hidden representation, potentially capturing complex interactions among out-

puts that can only be handled by structured inference (Xu et al., 2019). This joint learning might 

improve overall forecast accuracy, as measured by a lower value-weighted MSE. Using industry 

betas in multi-output modeling is a promising approach when considering target variables as non-

independent entities. This is predicated on the recognition that a firm’s exposure to diverse industry 

sectors can be correlated, with certain industries exhibiting synchronized movement due to shared 

economic drivers or supply chain linkages. Moreover, training in conjunction with a shared repre-

sentation can enhance generalization, as the presence of multiple targets serves as a form of regu-

larization. This process functions as a guide, steering the model towards the identification of more 

universal predictors. This, in turn, serves to prevent the model from overfitting to the particularities 

of a single target (Caruana, 1997). However, if one target is noisy or sends conflicting signals 

compared to others, it can also degrade the model’s overall performance. This underscores the 

importance of careful model design and implementation. 
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Both model architectures are built on the same foundational framework and share a common 

set of established regularization techniques in order to prevent overfitting and enhance generaliza-

tion. These include dropout (randomly deactivating 5% of input predictors at each iteration), batch 

normalization (applied after the final hidden layer to stabilize activations), and early stopping 

(which halts training once the validation loss fails to improve for five consecutive epochs). In 

addition, we employ learning rate scheduling (Kingma and Ba, 2014), which reduces the learning 

rate gradually as convergence slows. We also use ensembling, in which five networks with differ-

ent random seeds are trained per architecture, and their predictions are averaged to mitigate vari-

ance stemming from the stochastic optimization process. We further apply both lasso and ridge 

regularization to the weight parameters during training, promoting sparsity and weight shrinkage, 

respectively. All networks use the hyperbolic tangent (Tanh) activation function, defined as 

 TanH(𝑥) =
2

1+𝑒−2𝑥 − 1, (4) 

because it delivers values in a centered range between -1 and +1. This choice aligns with the 

distribution of our target variables, i.e., first differences in industry betas (see Section 4.3), which 

are continuous, mean-reverting, and centered around zero. The centered output helps to maintain 

balanced gradients during training, which can accelerate convergence and improve training stabil-

ity, especially when compared to alternatives like the Rectified Linear Unit (ReLU) activation 

function, which may be more intuitive when predicting the levels of beta estimates rather than their 

changes. Model training is performed with a batch size of 50, and we train each network for up to 

100 epochs. Each network type uses either one, two, or three hidden layers. Network architecture 

follows the geometric pyramid rule (Masters, 1993), with decreasing numbers of neurons in deeper 
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layers.2 A detailed summary of all model configurations and hyperparameter choices is provided 

in the Appendix Table A2. 

Machine learning models offer considerable flexibility, but this comes at the risk of overfit-

ting, particularly when the number of predictors is large or when the relationship between variables 

is unstable over time. To control model complexity and ensure valid out-of-sample inference, we 

tune relevant hyperparameters using time-series cross-validation. Following Gu, Kelly, and Xiu 

(2020a), we partition the data into rolling time windows preserving the temporal order of the data 

and comprising three subsamples: a training sample, a validation sample, and a test sample. For 

each year in the test period, we use nine years of data for training, one year for validation (and to 

tune hyperparameters), and reserve the following year for out-of-sample testing. We evaluate each 

parameter configuration by computing the time-series average of monthly value-weighted MSEs 

within the validation sample. The configuration that yields the lowest validation error is then se-

lected and applied to the out-of-sample test year. We refit models once a year. A rolling-window 

framework captures the dynamic nature of financial data by allowing model estimates to continu-

ously adjust as new information becomes available. Importantly, the test sample is never used 

during model training or parameter tuning, making it a clean benchmark for evaluating out-of-

sample predictive performance. 

4.3 Challenges of multi-output neural networks and corrective measures 

While multi-output neural networks offer a conceptually elegant solution to predict multiple 

related targets simultaneously, they also face several practical and statistical challenges. Although 

 
2 Results not reported show that wider or deeper architectures reduce forecast accuracy in both our single- and multi-

output approaches. This is consistent with Kelly, Moskowitz, and Pruitt (2021), who note that simpler networks with 

fewer layers and parameters tend to perform better in small samples, as deeper architectures pose greater optimization 

challenges due to nonconvex objectives and instability from vanishing or exploding gradients during backpropagation. 
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well established in disciplines such as computer vision, bioinformatics, data mining, and natural 

language processing (for a broader overview, see Xu et al. (2019)), to the best of our knowledge, 

we are the first to apply this solution in empirical asset pricing. Therefore, this section is devoted 

to an in-depth examination of the critical challenges associated with the implementation of multi-

output architectures within the domain of asset pricing. It also delineates our strategies devised to 

effectively mitigate these challenges. Pitfalls can be (1) target-related, arising from structural het-

erogeneity and distributional imbalances across predicted outcomes, (2) data-related, stemming 

from sparsity, instability, or definitional ambiguity in certain industry groups, and (3) model-re-

lated, involving loss function specification and optimization dynamics that may inadvertently bias 

learning toward dominant sectors. 

A fundamental challenge in multi-output prediction arises when the target variables exhibit 

heterogenous statistical properties. In particular, industry betas are not identically distributed and 

non-stationary over time, i.e., their statistical properties are subject to regime changes, structural 

breaks, or evolving market conditions. Panel A of Figure 1 highlights this issue by illustrating the 

cross-sectional dispersion of realized industry betas across all sample months. For each of the ten 

Fama-French industries, we display two boxplots: one for industry constituents (black bars) and 

another for non-constituents (gray bars). Industry constituents are defined as stocks that are exclu-

sively assigned to a given industry based on our industry dummy variables (equal to one), whereas 

non-constituents are those for which the dummy equals zero. The panel reveals two major patterns. 

First, the cross-sectional distribution of realized industry betas is highly heterogeneous, with con-

siderable variation in the interquartile ranges across industries. Second, there is a clear divergence 

between core constituents of an industry and those that are non-core constituents, i.e., stocks that 



19 

exhibit only peripheral exposure to the industry.3 This structural heterogeneity introduces a prob-

lem for multi-output learning, where loss functions, such as MSE, typically aggregate errors uni-

formly across output nodes. This implicitly assumes that the distributions of all target variables 

are comparable in scale and dispersion. In practice, however, industry betas vary in both volatility 

and distributional shape. This potentially leads to biased optimization, where industries with higher 

variance or heavier tails disproportionately influence the optimization. The issue is further com-

pounded by the fact that cross-sectional dispersion of industry betas is of a time-varying nature, 

exhibiting higher dispersion during periods of recession than during periods of expansion (Baele 

and Londono, 2013). To address this, we refrain from predicting levels of industry betas directly 

and instead model their first differences, i.e., their changes in betas. This transformation aligns the 

distributional properties across industries over time, improving the comparability of targets across 

output nodes. To retrieve levelized industry beta predictions, the predicted changes are applied to 

the previously observed realized industry beta, which serves as the initial anchor. 

Multi-output networks depend on consistent, well-populated data across all output dimen-

sions. Panel B of Figure 1 illustrates the time-series dispersion of value-weighted realized industry 

betas. While most industries exhibit stable beta distributions centered around one, two sectors – 

utils and other – show notably higher dispersion. This pattern may reflect structural data limita-

tions. In the case of utils, the industry is consistently represented by a small number of firms, 

averaging fewer than ten per month, which limits the model’s ability to learn stable relationships. 

The other category comprises a highly diverse and poorly defined set of firms without a coherent 

economic structure, making it difficult to interpret or model. The presence of such imbalanced 

 
3 This finding aligns with the conclusions of Kaplan and Petersen (1998), who contend that the exclusive consideration 

of pure play stocks engenders a systematic upward bias in industry beta estimates. 
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sample sizes across industries may contribute to model instability by overfitting noise in sparsely 

populated industries. To mitigate these problems, we exclude both utils and other from further 

analyses. This ensures that the model only learns from industries with statistically reliable and 

economically interpretable characteristics.4 

A critical technical challenge in multi-output neural networks arises from the aggregation of 

individual losses across output nodes. By default, standard implementation approaches assign uni-

form weights to each output dimension, implicitly assuming that all targets are equally important 

and comparably distributed. In asset pricing, however, this assumption is problematic because the 

relative market share of industries changes substantially over time. Panel C of Figure 1 highlights 

this issue by illustrating the time-varying weights of different industries in terms of total market 

capitalization. Some sectors, particularly industries such as hitec, experienced high growth during 

the observation period and substantially increased their market share over time. In a standard multi-

output setting with uniform loss weights, equal weights implicitly overweight larger industries in 

terms of the number of constituents and regardless of their market capitalization, simply because 

they contribute more observations to the loss function. This biases the learning process towards 

larger industries and potentially decreases model performance (Xu et al., 2019). 

To mitigate this bias, we introduce a value-weighted loss function that applies the inverse of 

industry market capitalization weights, reducing the dominance of large industries and allowing 

for a more balanced representation across outputs. An inverse weighting scheme ensures that firms 

with larger market shares do not excessively drive the loss function during training. To formalize 

 
4 One possible remedy to mitigate sample imbalances would be to apply random oversampling, either in the form of 

naïve duplication based on observation counts for each industry or through a more refined value-weighted over-

sampling procedure that aligns sample proportions in terms of market-capitalization-based industries weights (see Xu 

et al. (2019) for an overview). Nevertheless, we opt for exclusion to preserve both statistical integrity and economic 

interpretability. In particular, oversampling structurally unstable (utils) or conceptually ambiguous categories (other) 

risks amplifying noise rather than reinforcing meaningful signal, thereby compromising model robustness. 
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this adjustment, we extend the value-weighted MSE in Equation (1) to an industry-weighted ver-

sion that accounts for differences in industry size.5 In particular, we evaluate model performance 

based on the IW-MSE at the end of month 𝑡, defined as: 

 𝐼𝑊-𝑀𝑆𝐸𝑡+𝑘|𝑡
 = ∑

1

𝑤𝑗,𝑡
∑ 𝑤𝑖,𝑡(𝛽𝑖𝑗,𝑡+𝑘

𝑅 − 𝛽𝑖𝑗,𝑡+𝑘|𝑡
𝐹 )2𝑁𝑡

𝑖=1  
𝐽𝑡
𝑗=1 , with 𝑘 = 12, (5) 

where 𝑁𝑡 is the number of stocks, 𝐽 the number of industries in the sample at the end of 

month 𝑡, and 𝑤𝑗,𝑡 is the market capitalization-based weight of industry 𝑗. 

In summary, while multi-output architectures offer scalability and the potential to exploit 

cross-target dependencies, they must be implemented with care. If left unaddressed, distributional 

differences, sample imbalances, and dynamic industry relevance can degrade predictive perfor-

mance. Our methodological adaptations are designed to address the aforementioned challenges 

and ensure that the model accurately reflects the statistical and economic structure of the data. 

4.4 Benchmark estimators 

To evaluate the performance of our ML-based industry beta estimates, we introduce a set of 

benchmark estimators. These benchmarks serve two main purposes: (1) to quantify the incremental 

value of capturing nonlinear relationships in industry beta estimation to then (2) isolate the added 

value of modeling multiple outputs simultaneously, as opposed to treating betas independently. By 

comparing our results to these conventional approaches, we anchor our analysis in a well-estab-

lished empirical framework and highlight the incremental value of machine learning methods, with 

particular emphasis on the benefits of multi-output modeling. 

 
5 While Equation (1) calculates the MSE for each industry separately, treating all industries as equally important 

regardless of size, the industry-weighted mean squared error (IW-MSE) in Equation (5) aggregates these individual 

errors using the inverse of each industry’s market capitalization weight. 
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We apply a set of models from the family of rolling-window estimators. These benchmark 

models are a parsimonious alternative because they rely solely on historical return information. 

This circumvents the need for firm characteristics or macroeconomic predictors. This simplicity 

not only reduces the risk of model misspecification but also offers a clean and transparent baseline 

for evaluating more complex forecasting models. In particular, we focus on rolling-window esti-

mators that compute time-varying industry betas for individual stocks via ordinary least squares 

(OLS) regressions of the form: 

 𝑟𝑖,𝑡𝑠
 = 𝛼𝑖,𝑡

𝐻 + 𝛽𝑖𝑗,𝑡
𝐻 𝑟𝑗,𝑡𝑠

  +  𝜀𝑖,𝑡𝑠, (6) 

where 𝑟𝑖,𝑡𝑠
  and 𝑟𝑗,𝑡𝑠

  denote the excess return of stock 𝑖 and the industry portfolio 𝑗, respectively. 

The subscript 𝑡 indicates that the coefficients 𝛼𝑖,𝑡
𝐻  and 𝛽𝑖𝑗,𝑡

𝐻  are estimated at each point in time 𝑡 

based on a rolling window of daily or monthly excess returns. The subscript 𝑠 = 1, … , 𝜏 indexes 

the return observations within the estimation window preceding the end of month 𝑡, where 𝜏 de-

notes the total length of the rolling window. The superscript 𝐻 indicates that the intercept and 

slope coefficients are historical estimates derived from rolling-window regressions. Specifically, 

the intercept 𝛼𝑖,𝑡
𝐻  captures the risk-adjusted excess return unexplained by the industry factor, while 

the slope 𝛽𝑖𝑗,𝑡
𝐻  reflects stock 𝑖’s historical exposure to industry 𝑗. The residual term 𝜀𝑖,𝑡𝑠 captures 

idiosyncratic return variation not accounted for by the model. 

We choose a set of benchmark models to address the limitations of conventional OLS re-

gressions, which are well-documented and of considerable concern: (1) the assumption that betas 

remain constant within each rolling window, (2) the use of equal weighting for all observations, 

and (3) the high sensitivity of OLS estimates to outliers. 
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The first supposition posits that betas remain constant within each rolling window, thereby 

introducing a fundamental bias–variance trade-off. Shorter windows respond more expeditiously 

to changes in risk exposures; however, they yield noisier estimates. Longer windows produce more 

stable estimates, albeit at the cost of potentially smoothing over structural shifts. For this reason, 

two common benchmark estimators are constructed that vary in terms of their window lengths (𝜏) 

and data frequency. The first estimator is based on a five-year rolling window of monthly returns 

(ols_5y_m), which aligns with the work of Black, Jensen, and Scholes (1972) and Fama and Mac-

Beth (1973). The second estimator is based on a one-year window of daily returns (ols_1y_d), 

which is consistent with the work of Andersen et al. (2006). 

Second, to relax the assumption of constant weights within the rolling window inherent in 

the OLS regression and place greater weight on more recent observations, we follow Hollstein, 

Prokopczuk, and Wese Simen (2019) and add exponentially-weighted rolling regressions to our 

set of benchmark estimators. Using a one-year window of daily return data, we estimate weighted 

least squares (WLS) regressions, where the weights applied to observations decline exponentially 

over time, i.e., more recent data receives more importance. The rate of decay of the weights is 

determined by a half-life parameter, which establishes the rate at which the weights decrease. Spe-

cifically, we consider two settings: one with a shorter half-life (one-third of the window), labeled 

ewma_s, which reacts quickly to new information, and another with a longer half-life (two-thirds 

of the window), labeled ewma_l, which provides a more stable estimate. In both cases, the weights 

add up to one. 

Third, to mitigate the sensitivity of OLS estimates to extreme return data, we adopt the slope 

winsorization approach proposed by Welch (2022). Specifically, we winsorize individual stock 

returns relative to the corresponding industry portfolio return, imposing the bound  
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 𝑟𝑖,𝑡𝑠
 ∈ (−2𝑟𝑗𝑡,𝑠 + 4𝑟𝑗𝑡,𝑠) (7) 

under the assumption that betas plausibly fall within the interval (−2, +4). We then compute 

industry betas using a one-year rolling window of these winsorized daily returns (bsw). This 

method effectively mitigates the impact of outliers, enhancing the robustness and stability of the 

resulting beta forecasts. 

5 Statistical analysis 

Building on the methodological framework introduced in Section 4, we now turn to an eval-

uation of the statistical performance of our ML models. The primary objective of our analysis is 

to assess the efficacy of multi-output models in predicting future industry betas, in comparison to 

conventional single-output alternatives. The analysis proceeds in two parts. First, we compare the 

forecast accuracy of industry beta forecasts across the models introduced in Section 4. Second, we 

examine the time-series behavior of forecast errors, with a particular focus on model performance 

during periods of elevated volatility and structural shifts in cross-industry relationships. 

5.1 Predictive performance of industry beta estimates 

We begin our empirical analysis by comparing the predictive accuracy of our forecasting 

models. Table 1 reports the MSE of industry beta forecasts, separately for benchmark estimators 

and ML models. The MSE is calculated as in Equation (1) and aggregated across time and indus-

tries, either using market capitalization-based (value-weighted) or equal-weighted schemes (Panel 

A) and compared across months to assess relative performance over time (Panel B). In line with 

Drobetz et al. (2024), we observe substantial improvement in forecast accuracy from ML models 

relative to traditional rolling-window estimators. Across both weighting schemes, ML models re-

duce MSEs by almost 50%, which highlights their superior ability to capture nonlinearities and 



25 

complex interactions within the set of predictors. Comparing both weighting schemes, the forecast 

accuracy of the value-weighted beta estimates is notably higher than that of their equal-weighted 

peers. This is likely due to the fact that equities with smaller market capitalization, which are given 

more weight under an equal-weighted scheme, are generally associated with more volatile beta 

estimates. Turning to our overall objective of comparing the multi-output model, sim, with the 

single-output model, sep, we observe considerable improvements in forecast accuracy of up to 

4.8% and 6.3% (value-weighted and equal-weighted MSE, respectively) in terms of MSE for the 

multi-output approach. 

Panel B further supports these findings by reporting the fraction of months during the test 

period (528 months) in which each model achieves a lower value-weighted average forecast error 

relative to its counterparts. ML models not only attain superior forecast accuracy on average but 

also demonstrate consistent outperformance over time. This observation underscores the reliability 

and practical relevance of our ML architectures. Most important, the sim model achieves lower 

forecast errors than the sep model in 63.83% of months. These improvements arise under identical 

data inputs, sample splits, and estimation procedures, which isolates the effect of the modeling 

architecture itself. We conclude that exploiting the interdependencies among targets by learning 

their joint distribution enhances predictive capability. 

To understand how forecast accuracy varies at the industry level, Panel A of Figure 2 reports 

the value-weighted MSE of industry beta forecasts (defined in Equation (1)) for each industry and 

model. We observe heterogeneity in forecast accuracy by industry sector. For example, industries 

such as durbl, hitec, and shops exhibit consistently lower forecast errors, whereas errors are sub-

stantially larger for nodur. These differences manifest as structural in nature and are predominantly 

independent of the specific model implemented. Moreover, they underscore the notion that some 
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industries inherently exhibit elevated levels of volatility, thereby impeding the precise estimation 

of their betas. When comparing sim (black bars) and sep (gray bars), we observe lower forecast 

errors for the multi-output model because sim consistently matches or outperforms sep. To high-

light this pattern, we report the percentage differences in average forecast errors (black filled tri-

angles), calculated as one minus the ratio of the average MSE of sim to that of sep. Triangles above 

the line, i.e., a positive percentage difference, indicate predictive superiority of the sim model. The 

industries nodur (9.7%), manuf (9.4%), telcm (8.3%) and durbl (5.3%) appear to be particularly 

well-suited to benefit from the multi-output approach. Consequently, the simulation model appears 

to have the capacity to capitalize on interactions among target variables, thereby enhancing the 

accuracy of forecasts. 

Panel B of Figure 2 extends the analysis to decile portfolios formed by sorting firms within 

each industry based on the industry beta estimate at the end of month 𝑡. For each decile, we com-

pute the value-weighted MSE and then average across all industries and time periods. As before, 

sim is represented by black bars and sep by gray bars. Most important, the sim model consistently 

outperforms the sep model and exhibits higher predictive performance across all decile portfolios, 

i.e., from high- to low-beta stocks. Again, the percentage differences in average forecast errors 

(black filled triangles) are calculated as one minus the ratio of the average MSE of sim to that of 

sep. The sim model exhibits robust gains relative to the sep model across the entire beta spectrum, 

underscoring its overall dominance in terms of out-of-sample accuracy. 

5.2 Time-series dynamics of forecast errors 

After evaluating forecast accuracy across industries, we now shift our focus to the temporal 

dimension of model performance. Understanding how forecast accuracy evolves over time is cru-

cial, especially in light of structural changes in market conditions and industry co-movement. 
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Therefore, we next analyze the time-series behavior of forecast errors to identify periods in which 

either model exhibits relative advantages. 

Panel A of Figure 3 presents the difference in forecast errors over time. Specifically, in each 

month, we compute the difference between the value-weighted MSE of sep and that of sim, indus-

try by industry, and then average across all industries. A positive forecast error indicates superior 

performance of the sim model (black bars), while negative forecast errors indicate a lower forecast 

error for the sep model (gray bars). We further highlight recession periods, as defined by the Na-

tional Bureau of Economics Research (NBER). We observe that the sim model maintains a lower 

error trajectory throughout most of the sample months, with pronounced outperformance during 

and following the dot-com bubble. 

To investigate what drives this performance gap, Panel B plots the average correlation of the 

target variables (industry betas), i.e., the average correlation each industry exhibits with all other 

industries over time. A distinct regime shift in cross-industry correlation structure becomes visible 

around 2000. In accordance with the findings of Baele and Londono (2013), a discernible frag-

mentation in the co-movement of industry betas during the dot-com bubble is evident. This frag-

mentation is characterized by a precipitous decline in correlations, suggesting that industries began 

to evolve more independently. This structural break persists into the mid-2000s and only gradually 

reverses following the global financial crisis. The multi-output model architecture appears to be 

effective in capturing and adapting to this evolving correlation structure. Specifically, its capacity 

to jointly model interdependent targets enables the sim model to translate these changes into more 

precise beta forecasts, particularly during periods of market turbulence. This advantage is ampli-

fied in a rolling estimation framework, where crisis episodes eventually become embedded in the 

model’s training set, enhancing its capacity to generalize across varying market regimes. 
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Finally, panel C of Figure 3 extends the analysis by reporting the fraction of years in the out-

of-sample period during which each model is included in the Model Confidence Set (MCS) of 

Hansen, Lunde, and Nason (2011). We conduct this evaluation at the yearly level to align with the 

annual frequency of model re-estimation. The MCS contains the “best” model(s) for each year and 

industry based on a given confidence level.6 Following Becker et al. (2021), we apply a 10% sig-

nificance threshold, corresponding to 90% model confidence sets. The full sample comprises 44 

years. The black bars in the figure represent the sim model, while the gray bars represent the sep 

model. An MCS of 50% (denoted by the black line) suggests that no model has a significant ad-

vantage over the other. In accordance with its superior predictive performance across both cross-

sectional and time-series dimensions, the sim model achieves higher MCS inclusion rates in most 

industries, reaching up to 70.5% in telcm and 72.7% in manuf. The only instance of relative un-

derperformance is observed in the energy sector, wherein the sim model is present in the MCS in 

a mere 47.7% of the years. Interestingly, we also observe that the energy sector remains decoupled 

from the overall market over the entire observation period (as also observed in panel B), which 

suggests limited potential for exploiting additional information in the multi-output approach. How-

ever, this isolated case of underperformance is not statistically distinguishable from random chance 

as the MSC inclusion rate lies within the 95% confidence interval of a binomial distribution under 

the null hypothesis of equal model performance. These findings imply that the enhanced predictive 

performance of the sim model is not confined to isolated episodes but is persistent across varying 

market regimes. These patterns further substantiate the hypothesis that the aggregation (pooling) 

 
6 In many economic applications, no single model consistently outperforms all others, as data is often insufficiently 

informative to yield a definitive ranking. However, it is possible to narrow down the set of competing models to a 

smaller subset, the so-called Model Confidence Set (MCS), which contains the best-performing model(s) with a spec-

ified level of confidence. Introduced by Hansen, Lunde, and Nason (2011), the MCS procedure identifies the subset 

of models that cannot be statistically distinguished from the best model, where “best” is defined in terms of minimizing 

the mean squared error (MSE). When data is highly informative, the MCS contains a single superior model. In contrast, 

with less informative data, the MCS may include multiple models, reflecting greater uncertainty in model selection. 
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of information across beta targets enhances estimation precision, particularly in instances of sub-

stantial co-movement among industries. Conversely, the absence of such co-movement does not 

entail any discernible disadvantage. 

More generally, our findings underscore the statistical value of employing multi-output ar-

chitectures that jointly model industry betas. This is due to the fact that such architectures capture 

cross-target dependencies and improve out-of-sample predictive performance. This is in contrast 

to single-output models, which systematically ignore these dependencies. However, the efficacy 

of such joint modeling is contingent upon the presence of economically substantiated relationships 

among the targets, as only in such cases can the shared architecture prove advantageous and gen-

erate stable and dependable inputs for asset pricing. 

6 Economic value 

The statistical superiority of the sim model naturally leads us to consider its economic rele-

vance. Improved beta forecasts are particularly valuable in applications that require market neu-

trality, such as beta-hedged anomaly portfolios or minimum variance portfolios. In this section, 

we undertake an examination of the hypothesis that the statistical improvements achieved by the 

multi-output approach translate into economically meaningful gains. In particular, we seek to as-

certain whether there is improved hedging effectiveness and lower tracking errors in portfolio ap-

plications. In order to accomplish this objective, it is necessary to assess the economic value of our 

industry beta estimates. This assessment is achieved by embedding the estimates in two canonical 

asset pricing applications: (1) the construction of market-neutral anomaly portfolios, and (2) the 

optimization of MVPs. Both applications rely on the accuracy and stability of risk estimates, albeit 

in distinct ways: the first emphasizes hedging effectiveness and neutrality to systematic exposures, 

while the second focuses on variance minimization under realistic investment constraints. 
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6.1 Anomaly portfolio hedging 

We begin our evaluation of economic value by analyzing the role of industry beta forecasts 

in constructing hedged anomaly portfolios. We extend the classical market-neutral framework to 

control for multiple sources of systematic risk simultaneously. Rather than focusing solely on mar-

ket beta neutrality, we construct long-short portfolios that are ex-ante neutral with respect to a full 

set of industry beta exposures. This aligns more closely with practical risk management consider-

ations, where investors should aim to eliminate broad industry tilts alongside market risk. 

We consider three well-known return anomalies: size (me), book-to-market (bm), and il-

liquidity (illiq). Our portfolio optimization follows Hollstein, Prokopczuk, and Wese Simen (2019) 

and Drobetz et al. (2024). We start by sorting stocks into two portfolios based on the respective 

anomaly signal at the end of month 𝑡. Due to data limitations, we deviate from conventional decile 

sorting, as smaller portfolio sizes may hinder the optimization procedure’s convergence. Con-

structing fewer but more robust signal-sorted portfolios ensures numerical stability throughout the 

sample. Specifically, we designate the top and bottom portfolio as the long (L) and short (S) legs, 

respectively. Within each leg, we use the out-of-sample beta forecasts from each model to optimize 

stock weights such that the ex-ante predicted industry beta matches the value-weighted industry 

beta profile, computed using market capitalization weights from the prior month. Due to the cross-

sectional dispersion of industry betas, as outlined in Section 5, an optimization of industry expo-

sures to equal one in both long and short legs is not always feasible. Therefore, the computation 

of portfolio weights for each model solves the following optimization problem independently for 

the long and short portfolios: 
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 min
𝑤𝑡

 ∑ (𝑤𝑖,𝑡 − 𝑤𝑖,𝑡
∗ )

2
𝑖  s. t. (8) 

 𝑤𝑖,𝑡 ≥ 0 

 ∑ 𝑤𝑖,𝑡𝛽𝑖,j,𝑡+1|𝑡
𝐹𝐽𝑡

𝑗=1 = 𝛽̅𝑖,𝑗,𝑡
𝑣𝑤 . 

In general, this optimization is designed to minimize the sum of the squared deviations from 

the initial market capitalization-based weights 𝑤𝑖,𝑡
∗ . This choice results in more investable portfo-

lios. The optimization is constrained such that all portfolio weights must be positive and the pre-

dicted industry betas 𝛽𝑖,j,𝑡+1|𝑡
𝐹  must match their cross-sectional value-weighted average 𝛽̅𝑖,𝑗,𝑡

𝑣𝑤 , based 

on the prior month’s market capitalization weights. The solution delivers portfolio weights that 

closely mimic the original capitalization structure, while enforcing neutrality with respect to sys-

tematic industry exposures. We combine the resulting long and short portfolios to form a hedged 

long–short anomaly portfolio (LS), designed to be ex-ante industry-beta neutral. The ex-post real-

ized betas are computed as the weighted average of one-year-ahead realized industry betas, allow-

ing us to assess the effectiveness of the hedging strategy. 

Table 2 shows time-series averages of the ex-post realized industry betas for the hedged 

long-short (LS) anomaly portfolios. The associated t-statistics, shown in parentheses, are com-

puted using Newey and West (1987) robust standard errors with eleven lags. The null hypothesis 

is that the respective industry beta for each long-short portfolio is equal to zero. We highlight t-

statistics in bold when the null hypothesis cannot be rejected at the 5% significance level. In other 

words, this occurs when |𝑡| < 1.96. While no model achieves complete ex-post neutrality across 

all industries, multi-output estimators deliver substantially better hedging performance. In partic-

ular, the sim model achieves industry neutrality, as measured by statistically insignificant expo-

sure, in at least half of the industry dimensions across all tested anomalies. This suggests that the 

joint estimation of beta vectors facilitates effective control of systematic risk at a granular level. 
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In contrast, the sep model produces portfolios with systematic directional exposures across indus-

tries, tilted either positively or negatively. This pattern suggests that failing to consider cross-sec-

tional correlation structures or co-movement of exposures can result in cumulative risk drift, which 

can compromise the effectiveness of hedging strategies. 

These findings underscore the economic value of improved forecast accuracy in multi-output 

models. In particular, the joint estimation of a vector of industry betas enables the sim model to 

neutralize unintended exposures more effectively than the sep model. In asset pricing applications, 

where portfolio alignment with complex risk structures is critical, such as constructing market-

neutral strategies or isolating specific factor premia, this capability offers a distinct advantage over 

univariate approaches. 

6.2 Minimum variance portfolios 

While the previous application focuses on hedging performance in anomaly-based portfo-

lios, beta estimates also play a central role in constructing MVPs. These portfolios are particularly 

relevant for investors who prioritize risk control over return prediction, as MVP optimization does 

not depend on expected returns. Instead, optimal portfolio weights are determined entirely by the 

structure of the estimated covariance matrix, which itself is dependent on the quality of the beta 

estimates. Accurately estimating stocks’ nuanced exposure to underlying risk factors, especially 

industry sensitivities, could greatly improve the precision of covariance forecasts. This is particu-

larly advantageous in settings aimed at minimizing risk, where inaccurate estimation of systematic 

risk can result in suboptimal portfolio allocations and unintended factor tilts. 

To evaluate the impact of increasingly granular risk modeling, we compare three versions of 

MVP construction: (1) Market beta model, which relies solely on market beta forecasts that are 

obtained using the neural net model specification as described in Section 4; (2) Market + industry 



33 

dummy model, which incorporates a firm’s industry assignment based on a set of mutually exclu-

sive industry dummy variables (which are equal to one for the firm’s assigned industry, and zero 

otherwise), combined with industry-specific estimates of idiosyncratic risk; (3) Market + industry 

beta model, which uses the industry beta estimates for each stock derived from the multi-output 

approach, alongside their respective industry-specific idiosyncratic risk estimates. This model pro-

gression enables the isolation of the incremental value of modeling nuanced industry exposures 

when estimating the covariance matrix. The third specification, based on a full set of jointly esti-

mated industry betas, offers the richest and most flexible representation of systematic risk. 

Following Cosemans et al. (2016), we assume a single-factor structure to approximate the 

high-dimensional covariance matrix. At the end of each month 𝑡, we forecast the out-of-sample 

covariance matrix for month 𝑡 + 1 as:  

 Ω𝑡+1|𝑡 = 𝑠𝑀,𝑡+1|𝑡
2 𝐵𝑡+1|𝑡𝐵𝑡+1|𝑡

′ + 𝐷𝑡+1|𝑡, (9) 

where 𝐵𝑡+1|𝑡 is the 𝑁𝑡 × 1 vector of out-of-sample beta forecasts, 𝑠𝑀,𝑡+1|𝑡
2  is the predicted 

market variance (taken as the variance of daily market excess returns over the prior year), and 

𝐷𝑡+1|𝑡 is the diagonal matrix of predicted idiosyncratic variances for each stock. The idiosyncratic 

variances are computed based on daily returns over the past year ending in month 𝑡 and using the 

residuals of a one-factor model, 𝑟𝑖,𝑡 − 𝛽𝑖,𝑡
𝐹 𝑟𝑀,𝑡. These estimates are assumed to persist into the next 

month. Using this estimated covariance matrix, we construct the MVP by solving the following 

optimization problem: 

 min
𝑤𝑡

 𝑤𝑡
′Ω𝑡+1|𝑡𝑤𝑡  s. t. (10) 

0 ≤ 𝑤𝑖,𝑡 ≤ 0.05 

 ∑ 𝑤𝑖,𝑡 = 1
𝑁𝑡
𝑖=1 . 



34 

The constraints ensure that the portfolio is fully invested and individual stock weights remain 

within a realistic range, i.e., between 0 and 5%, consistent with short-selling restrictions and posi-

tion limits typically imposed in institutional settings. The portfolio is rebalanced monthly, and we 

track its out-of-sample performance using realized returns in month 𝑡 + 1. Return and risk statis-

tics are computed based on these monthly portfolio returns. 

Next, we extend the covariance matrix by incorporating industry-level risk via a set of in-

dustry dummies, defined according to the Fama and French (1997) SIC-based classification. This 

introduces an industry risk component into the optimization framework, effectively augmenting 

the market risk model in Equation (9) to a multi-factor model:  

 Ω𝑡+1|𝑡 = 𝑆𝑡+1|𝑡𝐵𝑡+1|𝑡𝐵𝑡+1|𝑡
′ + 𝐷𝑡+1|𝑡, (11) 

where 𝐵𝑡+1|𝑡 is an 𝑁𝑡 × 𝐾 matrix of factor loadings reflecting market beta and industry dum-

mies, and 𝑆𝑡+1|𝑡 is a 𝐾 × 𝐾 diagonal matrix of factor variances computed from the variance of 

daily market and industry excess returns over the previous year. Idiosyncratic variances are com-

puted based on the residuals from the factor model: 𝑟𝑖,𝑡 = ∑ 𝛿𝑖𝑗
 𝑟𝑗,𝑡 + 𝜀𝑖,𝑡

𝐾
𝑗=1 , where 𝛿𝑖𝑗

  = 1 if firm 

𝑖 belongs to industry 𝑗, and 0 otherwise, 𝑟𝑗,𝑡 is the value-weighted return of industry 𝑗, and 𝑟𝑖,𝑡 is 

the return of firm 𝑖. Under this specification, the covariance matrix reflects both market-wide and 

industry-specific sources of systematic risk, with the implicit assumption that industry betas are 

constant and equal to one. 

Finally, we generalize this framework further by replacing the binary industry dummies with 

our industry beta estimates derived from the multi-output approach. Unlike the simpler dummy-

based specification, this approach allows each stock 𝑖 to exhibit continuous and time-varying ex-

posure to all industries. This captures a richer, more nuanced structure of systematic risk. Formally, 

the factor loading matrix 𝐵𝑡+1|𝑡 now contains the market beta and industry beta estimates for each 
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stock 𝑖, and the residuals used to construct 𝐷𝑡+1|𝑡 are obtained from a linear projection of stock 

returns onto the full set of industry factor returns: 𝑟𝑖,𝑡 = ∑ 𝛽𝑖,𝑗,𝑡
𝐹 𝑟𝑗,𝑡 + 𝜀𝑖,𝑡

𝐾
𝑗=1 , where 𝛽𝑖,𝑗,𝑡

𝐹  denotes 

the industry beta estimate of stock 𝑖 for industry 𝑗, reflecting each asset’s unique loading on indus-

try-level factors. 

Table 3 summarizes the risk characteristics of the MVPs. All performance metrics are based 

on monthly portfolio returns. We observe that the ex-post standard deviation (Std) of the MVPs 

decreases monotonically as the modeled risk exposures become more granular. This trend holds 

not only for overall volatility but also across multiple dimensions of risk. In particular, the down-

side deviation (Dwnd), which is computed over months with negative returns, the lowest monthly 

excess return (Min), and the maximum drawdown (MaxDD), defined as the largest cumulative loss 

from peak to trough, improve substantially when transitioning from market-only to multi-industry 

risk models. Our results confirm the hypothesis that more accurate representations of systematic 

risk directly enhance portfolio stability. Most important, incorporating multi-output industry betas 

allows for a more nuanced decomposition of common risk exposures, which in turn leads to more 

effective variance minimization. 

Our findings demonstrate that the observed statistical improvements in industry beta estima-

tion translate into economically meaningful gains. The joint estimation of the full vector of indus-

try betas is a methodological advancement that enables multi-output models to systematically iden-

tify cross-industry dependencies and nonlinear risk structures that are typically overlooked by sin-

gle-output models. This more granular representation of systematic risk directly enhances portfolio 

construction, whether by improving hedging precision in anomaly strategies or by yielding more 

stable and efficient minimum variance portfolios. It is evident across both applications that more 
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accurate and robust industry beta forecasts facilitate a more optimal alignment of portfolio expo-

sures with investors’ risk objectives. 

7 Conclusion 

We compare the predictive performance of multi-output neural networks for industry beta 

estimation against both conventional single-output neural network and benchmark estimators. Us-

ing a comprehensive panel of U.S. stocks, we find that the multi-output model not only improves 

out-of-sample forecast accuracy but also delivers more stable and economically relevant industry 

beta estimates, particularly during periods of crisis with structural shifts in cross-industry co-move-

ments. In economic applications, the multi-output neural network model enhances hedging preci-

sion in anomaly portfolios by achieving broader industry neutrality and improves minimum vari-

ance portfolio construction through a more granular representation of systematic risk. 

We conclude that by simultaneously estimating industry betas, the multi-output model can 

capture cross-sectional interdependencies across industries, while also accommodating the nonlin-

ear dynamics and complex predictor interactions embedded in the predictor set. However, to fully 

realize these benefits, such architectures must be implemented with care, as distributional shifts, 

sample imbalances, or changes in industry relevance can degrade their predictive performance if 

left unaddressed. 
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Figure 1 

Cross-sectional dispersion of realized industry betas and industry dynamics 

This figure presents an overview of the distribution of realized industry betas. Panel A illustrates the cross-sectional dispersion of realized industry 

betas across all sample months. For each of the ten Fama-French industries, the panel displays two boxplots reflecting the dispersion of beta 

estimates for industry constituents (black bars) as well as all non-constituents (gray bars) and summarizes the interquartile range (IQR), which 

spans from the 25th percentile to the 75th percentile. Panel B reports the time-series dispersion of value-weighted realized industry betas. For each 

month, the industry beta is computed as the value-weighted average of realized betas from industry constituents. Panel C presents the evolution 

of market-capitalization-weighted industry allocations across all sample months. The sample comprises all firms that were listed on the NYSE, 

AMEX, or NASDAQ at any point between April 1970 and December 2023. 
  

 

  

 

  

 

  

Panel C: Evolution of market-capitalization-weighted industry allocations 

Panel B: Time-series dispersion of value-weighted realized industry betas 

Panel A: Cross-sectional dispersion of realized industry betas 
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Figure 2 

Forecast error by industry and portfolio sorts 

This Figure compares the forecast errors for industry beta estimates of the sep model (gray bars) and sim (black bars) model introduced in Section 

4. Beta estimates are computed for eight industries – durbl, enrgy, hitec, hlth, manuf, nodur, shops, and telcm – based on the SIC-based industry 

classification of Fama and French (1997). Forecast errors are defined as time-series averages of monthly value-weighted cross-sectional mean 

squared errors, computed as 𝑀𝑆𝐸𝑡+𝑘|𝑡
(𝑗)

= ∑ 𝑤𝑖,𝑡(𝛽𝑖𝑗,𝑡+𝑘
𝑅 − 𝛽𝑖𝑗,𝑡+𝑘|𝑡

𝐹 )2𝑁𝑡
𝑖=1 . Realized industry betas are measured over the subsequent twelve months 

following the forecast month. The figure further reports the percentage differences in average forecast errors (black filled triangles), calculated 

as one minus the ratio of the average MSE of sim to the average MSE of sep. Panel A presents results based on the full cross-section, while Panel 

B shows the time-series averages of forecast errors for portfolios sorted into deciles by predicted beta levels at the end of each month. Stocks are 

independently sorted for each forecasting model. The sample comprises all firms that were listed on the NYSE, AMEX, or NASDAQ at any 

point between April 1970 and December 2023. 
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Figure 3 

Forecast error over time 

This figure illustrates the time-series dynamics of forecast errors for industry beta estimates. Beta estimates are computed for eight industries – 

durbl, enrgy, hitec, hlth, manuf, nodur, shops, and telcm – based on the SIC-based industry classification of Fama and French (1997). Panel A 

plots the differences in absolute forecast errors. For each month, differences are computed between the absolute value-weighted MSE of sep and 

that of sim for each industry and then averaged across all industries. A positive forecast error indicates superior performance of the sim model 

(black bars), while negative forecast errors indicate a lower forecast error for the sep model (gray bars). NBER recession periods are shaded in 

gray. For each industry, Panel B shows the average correlation of the target variables, i.e., the average correlation each industry exhibits with all 

other industries over time. Panel C reports the fraction of years in the out-of-sample period during which each model is included in the Model 

Confidence Set (MCS) of Hansen, Lunde, and Nason (2011). The black bars represent the sim model, while the gray bars represent the sep model. 

The sample comprises all firms that were listed on the NYSE, AMEX, or NASDAQ at any point between April 1970 and December 2023. 
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Table 1 

Mean squared errors of industry beta estimates 

This table reports the mean squared errors (MSE) for industry beta forecasts generated by the machine learning and benchmark models introduced 

in Section 4.2 and 4.4, respectively, and summarized in Appendix Table A2. MSE are computed as 𝑀𝑆𝐸𝑡+𝑘|𝑡
(𝑗)

= ∑ 𝑤𝑖,𝑡(𝛽𝑖𝑗,𝑡+𝑘
𝑅 − 𝛽𝑖𝑗,𝑡+𝑘|𝑡

𝐹 )2𝑁𝑡
𝑖=1  

and aggregated across time and industries, either using market-capitalization-based (value-weighted) or equal-weighted schemes (Panel A). Beta 

estimates are computed for eight industries – durbl, enrgy, hitec, hlth, manuf, nodur, shops, and telcm – based on the SIC-based industry classi-

fication of Fama and French (1997). Panel B reports the fraction of months in which the column model achieves a lower value-weighted average 

forecast error relative to the model in the corresponding row. The sample comprises all firms that were listed on the NYSE, AMEX, or NASDAQ 

at any point between April 1970 and December 2023. 

 Benchmark estimators ML models 

 ols_5y_m ols_1y_d ewma_s ewma_l bsw sep sim 

Panel A: Average Forecast Errors        

MSE, value-weighted (%) 14.62 8.10 8.03 7.92 7.30 3.97 3.78 

MSE, equal-weighted (%) 37.67 18.04 19.09 18.07 14.58 7.32 6.86 

        

Panel B: Average Forecast Errors over Time       

Benchmark estimators        

vs. ols_5y_m  88.15 89.20 88.85 90.24 99.30 99.65 

vs. ols_1y_d 11.85  51.22 64.46 82.58 99.65 99.30 

vs. ewma_s 10.80 48.78  58.89 70.73 97.56 96.86 

vs. ewma_l 11.15 35.54 41.11  73.52 98.61 97.91 

vs. bsw 9.76 17.42 29.27 26.48  97.91 97.56 

ML models        

vs. sep 0.70 0.35 2.44 1.39 2.09  63.83 

vs. sim 0.35 0.70 3.14 2.09 2.44 36.17  
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Table 2 

Anomaly portfolio hedging 

This table shows the market-neutral anomaly portfolios based on industry beta forecasts that were obtained from the models described in Section 

6.1. The anomaly considered are firm size (me), book-to-market (bm), and illiquidity (illiq). Beta estimates are computed for eight industries – 

durbl, enrgy, hitec, hlth, manuf, nodur, shops, and telcm – based on the SIC-based industry classification of Fama and French (1997). Portfolio 

optimization follows the optimization framework also detailed in Section 6.1. The table entries are the time-series averages of the ex-post industry 

betas (𝛽) for the long–short portfolios (LS) sorted on each anomaly variable. The associated t-statistics, shown in parentheses, are computed 

using Newey and West (1987) robust standard errors with eleven lags. The null hypothesis is that the respective industry beta for each long-short 

portfolio is equal to zero. The sample comprises all firms that were listed on the NYSE, AMEX, or NASDAQ at any point between April 1970 

and December 2023. 

      durbl enrgy hitec hlth manuf nodur shops telcm 

  Model   βLS βLS βLS βLS βLS βLS βLS βLS 

b
m

 

sep   (0.01) 0.01 (0.02) (0.06) (0.01) (0.06) (0.02) (0.01) 

    (-1.05) (1.19) (-4.15) (-13.34) (-2.06) (-7.60) (-4.38) (-1.16) 

sim   0.01 0.01 (0.01) (0.04) 0.01 (0.04) (0.00) 0.01 

    (1.42) (2.09) (-2.58) (-10.41) (1.66) (-5.67) (-1.01) (1.04) 

                   

m
e 

sep  0.02 0.03 0.01 0.05 0.03 0.07 0.02 0.02 

   (3.97) (6.29) (2.83) (8.17) (4.76) (6.32) (4.24) (3.44) 

sim  0.00 0.02 (0.00) 0.03 0.01 0.05 0.00 0.00 

   (0.26) (3.55) (-0.03) (6.34) (1.82) (5.27) (0.59) (0.39) 

                   

il
li

q
 

sep   (0.02) (0.04) (0.02) (0.05) (0.03) (0.07) (0.02) (0.03) 

    (-4.60) (-7.01) (-4.39) (-9.50) (-4.43) (-6.68) (-3.99) (-4.99) 

sim   (0.01) (0.02) (0.01) (0.03) (0.00) (0.05) (0.00) (0.01) 

    (-1.23) (-4.14) (-1.56) (-7.36) (-0.59) (-5.42) (-0.04) (-1.72) 
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Table 3 

Minimum variance portfolios 

This table summarizes the characteristics of minimum variance portfolios obtained from the models described in Section 6.2. In the portfolio 

optimization procedure, we follow Cosemans et al. (2017) and impose a single-factor structure on the covariance matrix of stock returns, making 

the estimated betas the primary determinants of the portfolio weights. Beta estimates are computed for eight industries – durbl, enrgy, hitec, hlth, 

manuf, nodur, shops, and telcm – based on the SIC-based industry classification of Fama and French (1997). Each month, we obtain portfolio 

weights that minimize the expected variance, subject to three constraints: (i) individual stock weights must be positive, (ii) no single stock may 

exceed a 5% weight, and (iii) the portfolio weights must sum to one. Forecasts of market and idiosyncratic variances are based on daily returns 

over the preceding twelve months. There are three distinct variations of this optimization procedure as outlined in Section 6.2: First, we optimize 

portfolio weights based solely on market beta estimates (market beta). Second, we extend the model by incorporating idiosyncratic industry risk 

through the inclusion of an industry dummy variable (market beta + industry dummy). Third, we capture more nuanced industry exposure by 

considering industry betas for each stock derived from the multi-output approach (market beta + industry betas). The following risk and return 

metrics are reported: Std denotes the ex-post time-series standard deviation of returns, Dwnd the downside deviation (computed over months with 

negative returns), Min the lowest monthly excess return, and MaxDD the maximum drawdown from a peak to trough considering multi-month 

periods. The sample comprises all firms that were listed on the NYSE, AMEX, or NASDAQ at any point between March 1970 and December 

2023 and have a market capitalization above the 20th percentile of NYSE stocks. 

    Minimum Variance Portfolios 

Optimization procedure   
Std 
[%] 

Dwnd 
[%] 

Min 
[%] 

MaxDD 
[%] 

Market beta model   12.07 10.07 -27.63 33.28 

            

Market beta + industry dummy model   11.90 9.98 -27.04 31.38 

            

Market beta + industry beta (sim) model   11.32 9.38 -26.51 29.00 
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Table A1 
Table A1 

Variable descriptions and definitions 

This table shows a detailed summary of the 80 predictors used in the empirical analysis following Drobetz et al. (2024). The sample comprises 

all firms that were listed on the NYSE, AMEX, or NASDAQ at any point between April 1970 and December 2023. Data is aggregated on a 

monthly frequency and denominated in U.S. dollars when currency-related. To avoid survivorship bias, we assume that firm-level fundamentals 

are available four months after fiscal year end, while market data becomes available immediately. 

  # Predictor Description Definition 

Predictors based on accounting information 

  1 age Age Number of years a firm is included in CRSP 

  2 at Total assets Book value of total assets 

  3 bm Book-to-market ratio Ratio of book and market value of equity 

  4 capturn Capital turnover Ratio of net sales to lagged book value of total assets 

  5 divpay Dividend payout ratio 
Ratio of dividends paid during the last fiscal year to net income of the last fiscal 
year 

  6 ep_covar Covariability in earnings 

Coefficient estimate in the regression of a stock’s earnings-to-price ratio on the 

market’s earnings-to-price ratio (i.e., the value-weighted average of all stocks’ 

earnings-to-price ratios) 

  7 ep_var Variablity in earnings Standard deviation of monthly earnings-to-price ratios over the last three years 

  8 finlev Financial leverage Ratio of book value of total assets to market value of equity 

  9 fxdcos Fixed cost of sales 
Ratio of selling, general, and administrative expenses plus research and develop-
ment expenses plus advertising expenses to net sales 

  10 illiq Illiquidity Ratio of monthly return to monthly dollar trading volume 

  11 intermom Intermediate momentum Excess return from month -12 to month -7 

  12 invest Investment Year-on-year growth of book value of total assets 

  13 ivol Idiosyncratic volatility 
Standard deviation of daily residuals from the Fama and French (1992) three-fac-

tor model within the previous months 

  14 ltrev Long-term reversal Excess return from month -36 to month -13 

  15 me Size Market value of equity 

  16 mom Momentum Excess return from month -12 to month -2 

  17 noa Net operating assets Ratio of operating assets minus operating liabilities to book value of total assets 

  18 opaccr Operating accruals 
Ratio of changes in noncash working capital minus depreciation to book value of 
total assets 

  19 oplev Operating leverage 
Ratio of operating costs (i.e., the sum of costs of goods sold and selling, general 

and administrative expense) to market value of total assets 

  20 ppe PPE change-to-assets ratio 
Ratio of changes in property, plants, and equipment to lagged book value of total 

assets 

  21 prof Profitability Ratio of gross profits to book value of equity 

Technical indicators 

  22 relprc Relative price Ratio of previous month’s price to its highest daily price during the last year 

  23 roa Return on assets Ratio of income before extraordinary items to book value of total assets 

  24 roe Return on equity Ratio of income before extraordinary items to book value of equity 

  25 ron Return on net operating assets Ratio of operating income after depreciation to lagged net operating assets 

  26 salestoassets Sales-to-assets ratio Ratio of net sales to book value of total assets 

  27 salestoprice Sales-to-price ratio Ratio of net sales to market value of equity 

  28 SGAtosales SGA-to-sales ratio Ratio of selling, general, and administrative expenses to net sales 

  29 strev Short-term reversal Excess return from the previous month 

  30 to Turnover Monthly dollar trading volume 

Macroeconomic indicator 

  31 dfy Default spread Yield differential between Moody’s Baa- and Aaa-rated corporate bonds 

Predictors based on sample estimates of beta 

  42 – 51 ols_3m_d_ind Short-term beta 
Sample estimate of changes in industry beta obtained from rolling regressions us-

ing a three-month window of daily returns 

  52 – 61 ols_1y_d_ind Medium-term beta 
Sample estimate of changes in industry beta obtained from rolling regressions us-

ing a one-year window of daily returns 
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  62 – 71 ols_5y_d_ind Long-term beta 
Sample estimate of changes in industry beta obtained from rolling regressions us-

ing a five-year window of daily returns 

Industry classifiers 

  72 - 80 ind Industry classification 
Fama and French (1997) industry classification, resulting in 10-1 = 9 industry 

dummies 
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Figure A1 

Figure A1 

Neural Network Architecture 

This figure illustrates the architecture of the sep model (left) and the sim model (right) introduced in Section 4. Gray circles denote the input 

layer, with the number of nodes corresponding to the dimension of the predictor vector. Black filled circles denote the output layer: in sep, the 

network forecasts a single industry's beta at a time; in sim, the network jointly forecasts betas for all industries. Hidden layers apply the hyperbolic 

tangent (tanh) activation function element-wise to linear combinations of the previous layer’s outputs. Each network type uses either one [32], 

two [32, 16], or three [32, 16, 8] hidden layers, following the geometric pyramid rule (Masters, 1993) with decreasing numbers of neurons in 

deeper layers. Arrows represent trainable weight parameters between layers. 
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Table A2 
Table A2 

Forecast models (incl. hyperparameter specifications) 

This table documents the hyperparameter settings, network architectures, and additional implementation details for the forecast models introduced 

in Section 4. 

Panel A: Benchmark estimators 

 Model Description Definition 

 ols_5y_m Historical beta Rolling regressions using a five-year window of monthly returns 

    

 ols_1y_d Historical beta Rolling regressions using a one-year window of daily returns 

    

 ewma_s Exponentially-weighted beta 
Rolling regressions using a one-year window of daily returns with exponen-
tially decaying weights (short half-life) 

    

 ewma_l Exponentially-weighted beta 
Rolling regressions using a one-year window of daily returns with exponen-

tially decaying weights (long half-life) 

    

 bsw Slope-winsorized beta Rolling regressions using a one-year window of winsorized daily returns 

    

Panel B: Machine learning estimators 

  # Hyperparameter Specification Definition 

General model set up 

   activation tanh Activation function 

   sizebatch 50 Batch size 

   numberepochs 100 Number of epochs 

   patience 5 
Number of iterations during which the value-weighted MSE is allowed to in-

crease in the validation sample 

   dropout rate 0.05 Fractional rate of input variables that are randomly set to zero at each iteration 

   batch_normalization ✓ 
Batch normalization is applied after the last hidden layer to stabilize and ac-

celerate training by standardizing layer inputs. 

   learning_rate 0.0001 
Learning rate used by the Adam optimizer to update network weights during 
backpropagation 

  l1, l2 0.00001 
Regularization parameters that penalize large model weights to prevent over-

fitting. 

   ensemble 5 
Number of independent seeds used for each specification family at each re-es-

timation date 

Network architecture 

  nn_1 [32] Architecture uses either one [32], two [32, 16], or three [32, 16, 8] hidden lay-

ers, following the geometric pyramid rule (Masters, 1993) with decreasing 
numbers of neurons in deeper layers 

  nn_2 [32, 16] 

  nn_3 [32, 16, 8] 

Single-Output Neural Net (sep) 

  yi 1 Output node(s) 

Multi-Output Neural Net (sim) 

   yi 8 Output node(s) 

 


